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Abstract—This work seeks to address two questions in cooperative OFDMA networks: First, how network coding based

cooperative diversity can be exploited effectively when overhearing is not readily available. Second, how to realize various forms

of gains available, including multi-user diversity, cooperative diversity, and network coding. The main contribution of this paper

is an unifying network utility maximization framework that jointly considers relay assignment, relay strategy selection, channel

assignment and power allocation. We formulate the optimization problem both with and without XOR-CD, a simple XOR-assisted

cooperative diversity scheme. We show that the optimization of physical layer resource allocation with XOR-CD is equivalent to a

weighted 3-set packing problem, which is NP-complete, and can be efficiently solved with provably the best approximation factor.

Without XOR-CD, the problem reduces to a weighted bipartite matching problem which can be optimally solved.

Index Terms—Cooperative communication, relays, network coding, resource allocation, OFDMA, cellular networks.

✦

1 INTRODUCTION

Network coding, a technique to allow coding capabil-
ity in exchange for network capacity gain, has been
utilized to improve performance in wireless networks
in general [2], [3]. In the context of cooperative di-
versity [4]–[6], network coding has been leveraged
at the relay to mix packets from different coopera-
tive sessions, provided that the relay overhears and
successfully decodes multiple transmissions and these
transmissions share a common destination [7]–[9].

In this paper, we investigate the use of network cod-
ing in cooperative diversity from a new perspective
of multi-channel networks. We assume the context of
OFDMA [10] based cellular networks, which impose
unique challenges since overhearing is no longer natu-
rally available as in previous work. Users cannot hear
each other unless tuned to the same channel. Coding
opportunities are therefore to be carefully invented
and engineered, rather than opportunistically harvested.
Moreover, network coding entails that the broadcast
rate is confined to the worst rate among all links
involved, aggravating the task of finding profitable
coding opportunities.

In light of these challenges, we propose a sim-
ple XOR-assisted cooperative diversity scheme called
XOR-CD. It exploits coding opportunities on bi-
directional traffic on the uplink and downlink of a mo-
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bile station (MS). Bi-directional traffic is profoundly
available in cellular networks, providing abundant
network coding opportunities. Fig. 1 illustrates an
example to show the basic idea of XOR-assisted co-
operative diversity (XOR-CD). Bi-directional traffic
exists between MS and the base station (BS). The
relay station (RS) performs cooperative relaying using
orthogonal channels. XOR network coding can be
used here to mix packets A and B at the RS and
multicast a re-encoded packet (A ⊕ B)′ using only
one subchannel. Assume that channel coding and
modulation are linear, (A ⊕ B)′ = A′ ⊕ B′. The MS
and BS can still receive the intended information by
XORing the coded packet with one that is known a
priori to itself. Therefore, cooperative diversity can still
be capitalized.
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Fig. 1. The motivating scenario for XOR-CD in OFDMA

networks. (·)′ represents modulation and channel cod-

ing. With XOR-CD, only 3 subchannels are needed

instead of 4 for conventional DF.

The benefits of XOR-CD are intuitive. In the
ideal case where channels are symmetric, and BS-RS
and MS-RS channel qualities are identical, XOR-CD
achieves the same transmission rate for both coop-
erative sessions involved, with a saving of one sub-
channel and the power of one transmission compared



to the conventional Decode-and-Forward. The saved
subchannel and power can be used to accommodate
more cooperative sessions, thereby further improving
the network throughput.

The question then becomes how to effectively reap
the promising gains of XOR-CD in OFDMA networks.
Three kinds of gains can be exploited here: (i) multi-
user diversity gain: for a given data/relay subchannel,
different MS experience independent fading, allowing
us to assign a subchannel to the MS with the largest
channel gain; (ii) cooperative diversity gain: The RS
helps the intended receiver to combat fading and
improve SNR through cooperative relaying; (iii) net-
work coding gain: bi-directional traffic is amenable to
network coding which is utilized at RS to make re-
laying more resource efficient, increasing the network
capacity.

Our main contribution in this paper is a unifying
network utility maximization framework (NUM) to
tackle the above problem. It jointly considers the
following dimensions of resource allocation: relay
assignment, relay-strategy selection, and subchannel
assignment for both MS and RS in a cell, which is
referred to as the RSS-XOR problem. Through dual de-
coupling, we show that the cross-layer problem can be
decoupled into two subproblems: an application layer
rate adaptation problem that is trivial to solve, and a
physical layer resource allocation problem which is
much more difficult.

Specifically, we prove that the RSS-XOR physical
layer resource allocation problem is NP-complete by
transforming it into a weighted 3-set packing prob-
lem. We propose a polynomial-time algorithm to solve
it with the best known constant approximation factor,
based on an algorithm for the weighted indepen-
dent set problem. We also formulate the optimization
problem with only conventional Decode-and-Forward
cooperative diversity, which is referred to as the NO-
XOR problem. Using the same decoupling technique,
we design an efficient algorithm that optimally solves
the NO-XOR physical layer resource allocation prob-
lem as a weighted bipartite matching problem. Finally,
we extend to consider relay power allocation among
cooperative sessions for both RSS-XOR and NO-XOR,
and propose subgradient-based algorithms to solve
them in the dual domain.

The remainder of this paper is structured as follows.
Sec. 2 summarizes related work, and Sec. 3 introduces
our system models. In Sec. 4 we formally present our
NUM framework, the RSS-XOR optimization problem
and its counterpart NO-XOR problem, and extend
both models for power allocation. In Sec. 5, we present
efficient algorithms to solve the difficult physical layer
resource allocation problems. We conduct extensive
simulations to verify the effectiveness of algorithms in
Sec. 6. Finally we give concluding remarks in Sec. 7.

2 RELATED WORK

This paper builds upon prior work on cooperative
diversity, whose roots can be traced back to the relay
channel model studied in [11]. The popularity of co-
operative diversity is owed to [4]–[6] where different
relay strategies are developed. Recent research aims
to exploit distributed antennas on neighboring nodes
in the network, and has resulted in many protocols
at both the physical layer [12], [13] and the network
layer [14]. We also build on work on network coding
introduced in [15]. It is shown in [2], [16]–[19] that
network coding combined with routing and schedul-
ing can greatly improve throughput in wireless multi-
hop networks. A similar conclusion is made for the
information exchange paradigm in which two nodes
exchange data via a relay [3], a scenario similar to
ours. However, the distinction is clear: in these prior
work, cooperative diversity is not leveraged as a
mechanism to combat fading, since the two nodes
cannot directly communicate without the relay.

Recently there are studies that incorporate network
coding into cooperative communication. [8] is ar-
guably the first work that studies the diversity gain
of network coding. Adaptive network coded coopera-
tion, the idea of which is to match network-on-graph
with code-on-graph to construct efficient network
codes accounting for changing topology and lossy
nature of wireless networks, is studied in [20]. In [9], a
network coding based cooperative diversity scheme is
proposed. The focus of these work is on the analysis
of diversity-multiplexing tradeoff of network coded
cooperative diversity. They rely on the overhearing
assumption with the single shared channel model,
while XOR-CD assumes a multi-channel setting and
focuses on the resource allocation problem to realize
the promise of network coding. In this regard our
work also differs from studies of joint network and
channel coding in two-way relay channel [21], [22].

Resource allocation in cooperative networks has
been extensively studied in previous work as well
[23]–[26]. [23] considers power allocation for a simple
triangle network with one pair of source-destination
and one relay. [24] considers multi-hop ad hoc net-
works and proposes a framework that jointly con-
siders routing, relay selection and power allocation.
[25], [26] considers OFDMA based cellular networks
and are most related to our work. [25] studies chan-
nel assignment and power allocation for multi-hop
OFDMA networks. [26] proposes solutions for joint
optimization of channel assignment, relay strategy se-
lection and power allocation in OFDMA cellular net-
works based on conventional Amplify-and-Forward
and Decode-and-Forward.

Different from these efforts (summarized in Table
1), this work represents an early attempt to study
cooperative relaying in multi-channel networks with
the use of network coding. We propose a novel di-



TABLE 1

Related studies to this paper.

Coding Channel Relay Power
diversity assignment strategy allocation

This paper
√ √ √ √

[8], [9], [20]
√ × × ×

[23] × × × √

[24] × × √ √

[25] × √ × √

[26] × √ √ √

versity scheme with XOR that improves the resource
efficiency of relaying and thereby boosts throughput
performance. More importantly, we present a cross-
layer optimization framework to address the resource
allocation problem for the cooperative network. Our
framework jointly considers network coding, chan-
nel assignment, relay strategy selection and power
allocation, which has not yet been discussed to our
knowledge.

Finally, our conference version [1] focuses on solv-
ing the physical layer resource allocation problem
with a specific utility function. In this work, we
adopt a network utility maximization framework that
generalizes to encompass many possible choices of
utility functions at the upper layer. We also show
that the upper layer rate allocation problem and the
lower layer resource allocation problem can be decou-
pled and solved independently through a subgradient
method, which is not present in [1].

3 SYSTEM MODELS

In this section, we introduce the underlying system
models for our optimization framework.

3.1 Network Models

We consider a single-cell OFDMA network. The BS
is communicating with each MS with bi-directional
traffic. The system operates in FDD mode, meaning
that the uplink and downlink of a MS are assigned
orthogonal sets of subchannels. A small number of
RS are employed in the cell to provide cooperative
diversity. They may help some MS for transmissions
on their data subchannels, using relay subchannels from
a relay channel pool orthogonal to the data channel
pool. One relay subchannel is used to support only
one data subchannel of a MS in conventional cooper-
ative diversity (CD). In the case of XOR-CD, one relay
subchannel is used to support two data subchannels,
one on the uplink and one on the downlink, as we
illustrated in Sec. 1. We further assume that the BS and
MS have infinite backlog of traffic. It is then the case
that cooperative transmissions progress concurrently
with direct data transmissions, which we shall discuss
in more detail in Sec. 3.4.2. Decode-and-Forward (DF)
is used as the conventional CD scheme.

TABLE 2

Key notations used in this paper.

ζ set of data subchannels
ψ set of relay subchannels
Ω set of mobile stations
Φ set of relay stations
L set of links

M(l) MS corresponding to link l
ci data subchannel ci ∈ ζ
cr relay subchannel cr ∈ ψ
r relay station r ∈ Φ
s mobile station s ∈ Ω
σl,c channel gain to noise ratio on link l channel c
P fixed power budget for direct transmission

p
r,ci,cr
l

conventional CD power allocation on link l

p
r,ci,cj ,cr
s XOR-CD power allocation on mobile station s

3.2 Channel Models

We model the wireless fading environment by large
scale path loss and shadowing, along with small scale
frequency-selective Rayleigh fading. Fading between
different subchannels are independent. We assume the
network operates in a slow fading environment, so
that channel estimation is possible and full channel
side-information (CSI) is available, which makes the
optimization feasible. In a practical system, channel
estimation is generally done at the receiver end and
fed back to the base station, which then solves the
optimization and informs all MS and RS the chan-
nel assignment, power levels, and relay strategies.
Such assumptions about the fading environment are
commonly used as in [23], [25], [26]. Also note that
when the environment has fast fading components,
optimization may be done in a statistical sense.

In practical systems, it is usually not feasible to
assign arbitrary subchannels for the uplink and down-
link transmissions due to self-interference. Usually
separate chunks of frequency bands are allocated
in FDD mode. Such a practical constraint does not
contradict our channel model, however, as we can
view any interference-free chunk of frequency bands
as a subchannel, which is the basic unit of channel
allocation in our problem. This constraint limits the
flexibility of channel allocation, and negatively im-
pacts the throughput performance of cooperative and
direct transmissions. Nevertheless, it does not affect
the relative performance improvement of XOR-CD
over comparative schemes, since the same constraint
exists for all types of transmissions.

An equal amount of power P is allocated for both
direct and relay transmissions across all data and
relay subchannels. In the extended models with relay
power allocation, however, RS can adjust the power
level for each of the relay subchannels they use in
order to confine themselves to their power budget.

3.3 Notations

Denote ζ, ψ, Ω and Φ as the set of data subchannels,
relay subchannels, MS, and RS, respectively. s ∈ Ω



denotes a MS and r ∈ Φ denotes a RS r, respectively.
l ∈ L denotes a directed link from the source S(l) to
the destination D(l) where L is the set of links. Each
link, being an uplink or downlink, has a correspond-
ing MS s such that S(l) = s or D(l) = s. Let M(l) = s

denote this relationship between l and s. Each link can
operate in one and only one of three modes, namely
the direct transmission mode, conventional CD mode
and XOR-CD mode, depending on the choice of relay
strategy.

Define the function R(ci, l) as the achievable rate
of direct transmission on link l when it is as-
signed with subchannel ci. For conventional CD,
R(ci, cr, r, p

r,ci,cr
l , l) is the achievable rate function

of l, when RS r is assigned to be the relay for
transmission on data subchannel ci, with allocated
power pr,ci,crl on relay subchannel cr. For XOR-CD,
R(ci, cj , cr, r, p

r,ci,cj ,cr
s , s) denotes the achievable rate

function if r is the relay of s for its uplink transmission
on ci and downlink transmission on cj , with allocated
power p

r,ci,cj ,cr
s on relay subchannel cr.

To assist the understanding of the analysis, we
summarize the key notations used throughout the
paper in Table. 2.

3.4 An Information Theoretic Analysis

We first provide an information theoretical analysis in
order to derive the rate functions for three transmis-
sion modes, especially XOR-CD. The setup, including
the complex channel gains on different links, is shown
in Fig. 2. Noises are modeled as i.i.d. circularly sym-
metric complex Gaussian noises CN (0, N0W ).

3.4.1 Direct Transmission

For direct transmission of say link AB, the achiev-
able rate is found using the well-known formula (in
b/s/Hz):

R(AB, c1) = log2

(

1 +
P · |hAB,c1 |

2

ΓN0W

)

, (3.1)

where Γ is the gap to capacity and P denotes the
direct transmission power. For notational convenience

we denote
|hAB,c1

|2

ΓN0W
as σAB,c1 , where σ represents the

channel gain-to-noise ratio. Then the rate function can
be simply expressed as:

R(AB, c1) = log2(1 + P · σAB,c1). (3.2)

3.4.2 Conventional CD

For the DF relay transmission for the traffic A to B,
assuming A is a MS and B is the BS, first R0 attempts
to decode A’s message. If decoding is successful,
R0 transmits to B with power p

R0,c1,c4
AB using relay

subchannel c4 as depicted in Fig. 2. Therefore, the
maximum rate for this mode can be found to be

R(c1, c4, R0, p
R0,c1,c4
AB , AB) = min{log2(1+P ·σAR0,c1),

log2(1 + P · σAB,c1 + p
R0,c1,c4
AB · σR0B,c4)}. (3.3)

Compared to the result in [6], ours does not have 1
2

before the expression. The reason is that a two-slot im-
plementation is assumed in [6] with a shared channel,
whereas in our OFDMA-based multi-channel system,
relay transmissions progress concurrently with direct
transmissions on orthogonal channels. At any time
slot, the concurrent relay transmission carries the
message it received from the direct transmission in the
previous time slot. For a reasonably long time period,
say hundreds of time slots, the one-time-slot lead time
can be safely ignored.
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Fig. 2. The channel models for Decode-and-Forward

and XOR-CD, where hl,c denotes channel gain of link l

when it is assigned subchannel c.

Inspecting the rate function, we can see that in-
creasing the relay power will first increase the rate,
but not any more after reaching a threshold, since
the relay cannot deliver more information than what
it can decode. Thus, the threshold value of the relay
power is such that

R(c1, c4, R0, p̃
R0,c1,c4
AB , AB) = log2(1 + P · σAR0,c1)

= log2(1 + P · σAB,c1 + p̃
R0,c1,c4
AB · σR0B,c4), (3.4)

which gives us

p̃
R0,c1,c4
AB =

σAR0,c1 − σAB,c1
σR0B,c4

P. (3.5)

Similar analysis can be carried out for
R(c2, c3, R0, p

R0,c2,c3
BA , BA) and the threshold power

p̃
R0,c2,c3
BA . These calculations will be used later for the

power control problem in Sec. 4.4.

3.4.3 XOR-CD

The relay transmissions from R0 to a MS A and the BS
B are done by performing XOR over the two messages
and multicasting using a single relay subchannel c3.
Therefore, the rate of this mode, for each of the two
links involved, can be shown to be

R(c1, c2, c3, R0, p
R0,c1,c2,c3
A , A) =

min{log2(1 + P · σAR0,c1), log2(1 + P · σBR0,c2),

log2(1 + P · σAB,c1 + p
R0,c1,c2,c3
A · σR0B,c3),

log2(1 + P · σBA,c2 + p
R0,c1,c2,c3
A · σR0A,c3)},

(3.6)

The first two terms in (3.6) represent the maximum
rate at which the relay can reliably decode the source



messages from both A and B, while the last two terms
represent the maximum rate at which A and B can
reliably decode their intended message given repeated
transmissions from R0’s multicast, respectively. Note
that the uplink and downlink flows have the same
rate given by (3.6).

Again the threshold value of relay power at R0 is
such that

R(c1, c2, c3, R0, p̃
R0,c1,c2,c3
A , A) =

min{log2(1 + P · σAR0,c1), log2(1 + P · σBR0,c2)}.

The detailed expression for p̃
R0,c1,c2,c3
A can then be

derived.

4 AN OPTIMIZATION FRAMEWORK

We present our optimization framework in this sec-
tion. After introducing the network utility maximiza-
tion framework, we first present RSS-XOR, our for-
mulation for the joint channel assignment, relay as-
signment, and relay strategy selection problem with
XOR-CD. We then provide another formulation with
conventional diversity schemes only, i.e. the NO-XOR
problem. We extend both formulations by considering
relay power allocation. Finally we demonstrate that
both problems under the NUM framework can be
solved in the dual domain as a cross-layer optimiza-
tion problem.

4.1 The Network Utility Maximization Framework

We adopt a network utility maximization framework
where each data stream of a particular link has a
utility function, and the overall objective is to max-
imize the total utility of the network. The network
utility maximization framework (NUM) is originated
from the seminal work of Kelly [27], and has been
extensively applied to cross-layer design problems in
wireless networking [28]. A utility function is a con-
cave and increasing function of the link throughput
that reflects a MS’s satisfaction. Depending on the
application the traffic is serving (e.g. voice, data), the
utility function can take on different shapes.

Denote the throughput of link l as dl, then utility
function can be denoted as Ul(dl). The objective of the
optimization can be expressed as:

max
dl

∑

l∈L

Ul(dl) (4.1)

4.2 The RSS-XOR Problem

Our goal is to optimize the strategies of assigning
appropriate relay subchannels to RS and data sub-
channels to MS, and pairing RS to the data subchan-
nels of MS with different choices of relay strategies,
in order to maximize the aggregated utility. We now
present the optimization constraints that reflect these
considerations in the following.

For both uplink and downlink, traffic falls into
three classes corresponding to the three transmission
modes, namely direct traffic, conventional CD traffic,
and XOR-CD traffic. Introduce three 0–1 decision vari-
ables xcil , yr,ci,crl , and z

r,ci,cj ,cr
s . xcil indicates whether

link l on data subchannel ci is performing direct trans-
mission. yr,ci,crl indicates whether link l is operating
in conventional CD mode with RS r and data-relay
subchannel pair (ci, cr). Each MS may be assigned
multiple such channel pairs depending on the instan-
taneous channel condition. z

r,ci,cj ,cr
s indicates whether

MS s is assigned with RS r and relay subchannel cr
for its uplink on data subchannel ci and downlink on
cj for XOR-CD.

Since an equal amount of power P is used for each
direct and relay transmission, throughput of link l can
be characterized as follows:

dl =
∑

ci∈ζ

R(ci, l)x
ci
l +

∑

ci∈ζ,cr∈ψ,r∈Φ

R
(

ci, cr, r, P, l
)

y
r,ci,cr
l

+
∑

ci,cj∈ζ,cr∈ψ,r∈Φ

R(ci, cj , cr, r, P, s)z
r,ci,cj ,cr
s ,

where s =M(l), ∀l ∈ L. (4.2)

Recall that each data subchannel can only be as-
signed to one link which operates in one of the three
modes. Therefore,

∑

l∈L

(

xcil +
∑

cr∈ψ,r∈Φ

y
r,ci,cr
l

)

+
∑

s∈Ω,r∈Φ,cj∈ζ,cr∈ψ

(

zr,ci,cj ,crs

+ zr,cj ,ci,crs

)

≤ 1, ∀ci ∈ ζ, (4.3)

where the first term accounts for the possibility that
ci is assigned for direct and conventional CD modes,
and the second term accounts for the possibility of
XOR-CD. Notice that this constraint also implicitly
takes into consideration that each link can only op-
erate in one of the three modes.

Similarly, each relay subchannel can be assigned to
only one cooperative session, be it conventional CD
session or XOR-CD session.

∑

l∈L

∑

r∈Φ

∑

ci∈ζ

y
r,ci,cr
l +

∑

s∈Ω

∑

r∈Φ

∑

ci∈ζ

∑

cj∈ζ

zr,ci,cj ,crs ≤ 1,

∀cr ∈ ψ.
(4.4)

Consequently, the RSS-XOR problem becomes an
integer program, with the objective (4.1) subject to
constraints (4.2), (4.3), and (4.4). For ease of presen-
tation, we use x,y and z to represent all the xcil s,
y
r,ci,cr
l s, and z

r,ci,cj ,cr
s s as optimizing variables.

RSS-XOR: max
x,y,z

∑

l∈L

Ul(dl)

s.t. (4.2), (4.3), and (4.4). (4.5)



4.3 The NO-XOR Problem

We also provide the optimization formulation under
NUM with only conventional cooperative diversity,
i.e., the NO-XOR problem, which is studied as a
baseline comparison. It can be readily formulated in a
similar way as the RSS-XOR problem, with z

r,ci,cj ,cr
s

equal to zero for any ci, cj ∈ ζ, cr ∈ ψ, s ∈ Ω, r ∈ Φ.
Formally,

NO-XOR: max
x,y

∑

l∈L

Ul(dl)

s.t. dl =
∑

ci∈ζ

R(ci, l)x
ci
l

+
∑

ci∈ζ

∑

cr∈ψ

∑

r∈Φ

R
(

ci, cr, r, P, l
)

y
r,ci,cr
l ,

∑

l∈L

xcil +
∑

l∈L

∑

r∈Φ

∑

cr∈ψ

y
r,ci,cr
l ≤ 1, ∀ci ∈ ζ,

∑

l∈L

∑

r∈Φ

∑

ci∈ζ

y
r,ci,cr
l ≤ 1, ∀cr ∈ ψ. (4.6)

4.4 Power Allocation

We can extend the two models by incorporat-
ing an additional constraint that each RS has a
limited power budget. A RS then has to allo-
cate the right amount of power across all the co-
operative sessions it supports in order to maxi-
mize the total utility. Mathematically, the through-
put constraints of both problems are updated by
using R(ci, cr, r, p

r,c,cr
l , l) to replace R(ci, cr, r, P, l) in

(4.2), and using R(ci, cj , cr, r, p
r,ci,cj ,cr
s , s) to replace

R(ci, cj , cr, r, P, s) in (4.6).
The constraint that the total power of RS cannot

exceed its budget can be expressed as follows for the
RSS-XOR problem:
∑

l∈L

∑

ci∈ζ

∑

cr∈ψ

p
r,ci,cr
l +

∑

s∈Ω

∑

ci∈ζ

∑

cj∈ζ

∑

cr∈ψ

pr,ci,cj ,crs ≤ Pr, ∀r.

(4.7)

where Pr denotes the power budget of RS r. RSS-XOR
with power allocation can be formulated by adding
constraint (4.7) into the original formulation.

For NO-XOR, the power constraint is simply:
∑

l∈L

∑

ci∈ζ

∑

cr∈ψ

p
r,ci,cr
l ≤ Pr, ∀r ∈ Φ. (4.8)

The power allocation version of NO-XOR is similarly
formulated by adding constraint (4.8) into (4.6).

4.5 Cross-layer Optimization in the Dual Domain

Both RSS-XOR and NO-XOR are non-convex prob-
lems because of the integer constraints x, y and z.
Duality gap for non-convex problems is non-zero in
general. However, in an OFDMA system with many
narrow subchannels, the optimal solutions of RSS-
XOR and NO-XOR are always convex functions of P ,

because if two sets of throughput using two different
channel-RS-link assignments and relay strategies are
achievable individually, their linear combination is
also achievable by a frequency-division multiplexing
of the two sets of strategies. This idea for non-convex
problems of multi-carrier systems is discussed in [29].
In particular, using the duality theory of [29], the
following is true:

Proposition 1: The RSS-XOR and NO-XOR prob-
lems, with the discrete selection of channels, RS and
relay strategies, have zero duality gap in the limit as
the number of OFDM subchannels goes to infinity.

A detailed proof can be constructed along the same
line of argument as in [29]. This proposition allows us
to solve non-convex problems in their dual domain.
Although it requires number of channels to go to
infinity, in reality the duality gap is very close to zero
as long as number of channels is large [26].

With this proposition, we show that the RSS-XOR
and NO-XOR problems can be decoupled into an ap-
plication layer rate adaption problem and a physical
layer resource allocation problem, and be solved by
solving these two problems separately. Our technique
is reminiscent of that in [26]. We focus on the basic
RSS-XOR problem, while the technique can be easily
applied to the NO-XOR problem and their power
allocation extensions as well.

First, introduce a new variable t =
[t1, . . . , tl, . . . , t|L|], and rewrite the RSS-XOR problem
as follows:

max
t,x,y,z

∑

l∈L

Ul(tl)

s.t. dl ≥ tl, ∀l ∈ L,

(4.2), (4.3), and (4.4). (4.9)

Because Ul is an increasing function, when the objec-
tive of (4.9) is maximized, tl must be equal to dl. Thus
(4.5) and (4.9) must have the same solution. The key
step to decompose the problem is to relax the new
constraint dl ≥ tl. The Lagrangian becomes

L(λ, t,x,y, z) =
∑

l∈L

(Ul(tl) + λl(dl − tl)) . (4.10)

where λl being a dual variable corresponding to link
l. Observe the dual function

g(λ) =

{

max
t,x,y,z

L(λ, t,x,y, z)

s.t. (4.2), (4.3), and (4.4).
(4.11)

now consists of two sets of variables: application layer
variable t, and physical layer variables x,y, z. It can
be readily separated into two maximization subprob-
lems, one rate adaptation problem in the application
layer,

gapp(λ) = max
t

∑

l∈L

(Ul(tl)− λltl), (4.12)



and a resource allocation problem in the physical
layer,

gphy(λ) =







max
x,y,z

∑

l∈L

λldl

s.t. (4.2), (4.3), and (4.4).
(4.13)

We can see that the optimization formulation pro-
vides a layered approach to the network utility max-
imization problem. The use of dual variable λ con-
trols the interaction between the layers. It can be
interpreted as a price signal that coordinates the
throughput supply and demand relationship between
the physical and application layer. The physical layer
attempts to maximize the total revenue given the per-
link rate price λl. A higher value of λl attracts the
physical layer to allocate more resources to l. The
application layer, on the other hand, tries to maximize
the total net utility, given the per-link rate cost λl.
A higher value of λl causes the application layer to
reduce its demand for throughput.

Finally, since the network utility maximization
problem (4.9) has zero duality gap, it can be solved
by minimizing the dual objective:

min g(λ)

s.t. λ � 0. (4.14)

One way to solve the dual problem is to use a sub-
gradient method that updates λ iteratively as shown
in Algorithm 1.

Algorithm 1 Subgradient method for solving (4.9).

1. Initialize λ(0).
2. Given λ(k), solve the application layer and phys-

ical layer subproblems (4.12) and (4.13), respec-
tively. Obtain the optimal values t∗, x∗, y∗ and
z∗, and thus d∗.

3. Perform a subgradient update for λ, where ν(k)

follows a diminishing step size rule:

λ(k+1)
r =

[

λ(k) +
(

ν(k)
)T (

t∗ − d∗

)

]+

4. Return to step 2 until convergence.

Following a diminishing step size rule for choosing
ν(k), the subgradient method above is guaranteed to
converge to the optimal dual variables [30]. Careful
readers may be concerned with the slow conver-
gence of the subgradient updates, especially when
the problem scales up. Computational experiences
suggest that the complexity of subgradient updates
is polynomial in the dimension of the dual problem,
which is |L| for g(λλλ) [26].

Solving the application layer subproblem is
straightforward. It can be readily seen that the
objective of (4.12) is maximized by maximizing each
term in the summation separately. Ul(tl) − λltl is

concave since by assumption Ul is a concave function
of tl. Thus, the optimal throughput demand in the
application layer t∗l can be found by simply taking
the derivative of Ul(tl) − λltl with respect to tl and
setting it to zero. The BS searches for t∗l for each link
l following this procedure.

Many different choices of utility functions are pos-
sible. Since we assume infinite backlog of data, we use
the following utility function definition for every link
throughout the rest of the paper:

Ul(tl) = ln tl (4.15)

This corresponds to the well-known proportional fair-
ness utility model [27]. Its merits include the ability
to strike a good balance between throughput and
fairness, and robustness with respect to changes in
topology and power constraints [28]. We let each link
shares the same utility function definition here for
ease of illustration. The optimization however does
not depend on this assumption to work. With this
simple utility function, t∗l can be readily found as
follows:

t∗l =
1

λl
. (4.16)

5 SOLUTION ALGORITHMS FOR THE PHYS-
ICAL LAYER RESOURCE ALLOCATION PROB-
LEM

We demonstrated that our network utility maximiza-
tion problems can be solved in their dual domain
by solving the application layer and physical layer
subproblems separately. We also showed that the
application layer subproblem is easy to solve. In this
section, we tackle the more difficult physical layer
subproblem.

The physical layer resource allocation problem is
essentially an integer program. Conventional ap-
proaches, such as branch and bound [31], are com-
putationally expensive. Our solution algorithms need
to be run frequently at each scheduling epoch, mak-
ing the task of deriving efficient heuristic algorithms
imperative. Here we design efficient algorithms that
solve the resource allocation for both the RSS-XOR
and NO-XOR problems. Specifically, we first prove
that RSS-XOR resource allocation is NP-complete and
can be solved in polynomial-time with an approx-
imation ratio of 1.5 using our algorithm. We then
show that NO-XOR resource allocation can be opti-
mally solved by transforming to weighted bipartite
matching. Finally we design a subgradient algorithm
to solve power allocation of the two problems in the
dual domain.

5.1 A Set Packing Algorithm for RSS-XOR Re-

source Allocation

Solving the seemingly prohibitive RSS-XOR resource
allocation problem (4.13) hinges on transforming to a



weighted set packing problem. We first establish the
equivalence and prove the hardness of the problem.
We then propose our algorithm with a constant ap-
proximation factor.

Proposition 2: The RSS-XOR resource allocation
problem is equivalent to a maximum weighted 3-set
packing problem, and is NP-complete.

Proof: Construct a collection of channel sets C

from a base set ζ∪ψ as shown in Fig. 3. There are three
kinds of channel sets, representing three transmission
modes respectively. (ci), where ci ∈ ζ represents all
the available channel sets for the direct transmission
mode. (ci, cr) where ci ∈ ζ, cr ∈ ψ corresponds to
all the available data-relay channel combinations for
the conventional CD mode, with data subchannel ci
and relay subchannel cr. The third kind, (ci, cj , cr)
corresponds to all the channel sets for the XOR-CD
mode with data subchannel pair (ci, cj) and relay
subchannel cr, where ci, cj ∈ ζ, cr ∈ ψ. Sets intersect
if they share at least one common element, and are
otherwise said to be disjoint.

Each set has a corresponding weight, denoting the
maximum objective value found across all possible as-
signments of this channel set to different combinations
of RS and links. Specifically,

w(ci) = max
l

λlR(ci, l), (5.1)

w(ci,cr) = max
l,r

λlR(ci, cr, r, P, l). (5.2)

For set (ci, cj , cr), its weight is found over all possi-
ble assignments of this set to combinations of RS and
uplink-downlink of a MS, since it can only be assigned
to one MS. Formally,

w(ci,cj ,cr) = max
s,r

∑

l:s=M(l)

λlR(ci, cj , cr, r, P, s). (5.3)

w(ci,cj ,cr) essentially sums up uplink and downlink
rates of s since one XOR-CD session incorporates two
cooperative transmissions.

The optimization (4.13) is to find the optimal strat-
egy to choose the transmission mode and assign RS
and channels to each link in order to maximize the
aggregated utility. The maximization is done over
all links. Equivalently, we can interpret it as to find
the optimal strategy to select disjoint channel com-
binations and assign RS and links to them so as to
maximize the objective. This is simply a change of the
order of summation in the objective of (4.13), when
we substitute (4.2) into it. In this alternative inter-
pretation, the maximization is done over all possible
channel sets by matching them to the best possible
links and RS without duplicate use of channels. The
solution found must exhaust all subchannels since we
can always improve the total weight by adding sets
corresponding to unassigned data and relay subchan-
nels. The number of elements in a set is at most 3,
therefore the problem is equivalent to weighted 3-set
packing [32], which is NP-complete.

All the sets and their corresponding set weight are
recorded in a table Tassign. We see that, for sets (ci),
the size of weight search space is |L|; for sets (ci, cr)
and (ci, cj , cr), the search space size is |Φ||L|. Thus,
the weight construction process is of polynomial time
complexity, given the number of three kinds of sets
are also polynomials of |ζ| and |ψ|.

To propose a good approximation algorithm with
reasonable time complexity, first we construct an in-
tersection graph GC of the set system C with the
set of vertices VC and the set of undirected edges
EC as shown in Fig. 3. Weighted set packing then
can be generalized as a weighted independent set
problem, the objective of which is to find a maximum
weighted subset of mutually non-adjacent vertices in
GC [33]. The size of sets is at most 3, therefore GC
is 3-claw free1. The best known approximation for
the weighted independent set problem in a claw-free
graph is proposed in [33] and then acknowledged in
[32], which we extend to form our algorithm.

First we introduce a greedy algorithm, called Greedy
that prepares the groundwork. Define N(K,L) to be
the set of vertices in L that intersect with vertices in
K, i.e. N(K,L) = {u ∈ L : ∃v ∈ K such that {u, v} ∈
E or u = v}. Greedy is a natural heuristic that
repeatedly picks the heaviest vertex from among the
remaining vertices and eliminate it and the adjacent
vertices as shown in Algorithm 2.

Algorithm 2 Greedy.

1. S← ∅

2. while VC −N(S, VC) 6= ∅ do
3. choose u ∈ VC − N(S, VC) with the maximum

weight
4. S ← S ∪ {u}
5. end while

Algorithm 3 Approximation algorithm for solving (4.13).

1. Construct the collection of weighted sets C and
transform them into the weighted undirected
graph GC .

2. Obtain a maximal independent set S using Greedy.

3. while ∃ claw c such that Tc improves w2(S) do
4. S ← S −N(Tc, S) ∪ Tc
5. end while
6. Assign channels to RS and links by searching the

entries in Tassign corresponding to the sets present
in S.

A natural thought to improve on the maximal inde-
pendent set found by Greedy is to do local search and
replace a set with its claw with larger weight, which
motivates our approximation algorithm summarized

1. Here a d-claw c is an induced subgraph that consists of an
independent set Tc of d nodes.
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as in Algorithm 3. From [33], local improvements on
the square of total weights solve the weighted inde-
pendent set problem with a constant approximation
factor of 1.5, which is the best result known so far
[32]. Therefore we have the following:

Proposition 3: Algorithm 3 provides at least 2
3 of

the optimum of RSS-XOR physical layer resource
allocation problem (4.13). This is the best performance
guarantee one can have unless a better algorithm can
be found for the weighted independent set problem.

5.2 A Matching Algorithm for NO-XOR Resource
Allocation

We now consider the NO-XOR physical layer sub-
problem. Using the same technique presented in
Sec. 4.5, the problem can be shown in the following
form:

max
x,y

∑

l∈L

λldl

s.t. dl =
∑

ci∈ζ

R(ci, l)x
ci
l

+
∑

ci∈ζ

∑

cr∈ψ

∑

r∈Φ

R
(

ci, cr, r, P, l
)

y
r,ci,cr
l ,

∑

l∈L

xcil +
∑

l∈L

∑

r∈Φ

∑

cr∈ψ

y
r,ci,cr
l ≤ 1, ∀ci ∈ ζ,

∑

l∈L

∑

r∈Φ

∑

ci∈ζ

y
r,ci,cr
l ≤ 1, ∀cr ∈ ψ. (5.4)

Surprisingly, we find that it can be optimally solved
in polynomial time. Specifically,

Proposition 4: The NO-XOR physical layer re-
source allocation problem is equivalent to weighted
bipartite matching over all data and relay subchan-
nels, and thus can be solved optimally.

Proof: Construct a bipartite graph A = (V1×V2, E)
where V1 and V2 correspond to the set of data sub-
channels ζ and relay subchannels ψ respectively, as
shown in Fig. 4. We patch void vertices to V2 to make
|V2| = |V1| = |ζ|. The edge set E corresponds to |ζ|2

edges connecting all possible pairs of channels in two
vertex sets. Each edge (k, j) carries three attributes,

(wkj , lkj , rkj), where

wkj = max
l,r

λlR(k, j, r, P, l),

(lkj , rkj) = argmax
l,r

λlR(k, j, r, P, l). (5.5)

For edges connecting data subchannels to void re-
lay subchannels that we patched, the edge weights
become (wkj , lkj , 0) where lkj is the link providing
maximum objective value if data subchannel k is used.
This essentially captures the maximum objective value
given by direct transmission.

Observe that A is bipartite, we can see the NO-XOR
resource allocation problem (5.4) is equivalent to find-
ing the maximum weighted bipartite matching on A.
The second attribute of an edge (k, j) in the maximum
matching represents the link assigned with this data-
relay subchannel pair (k, j), while the third attribute
dictates the transmission mode or the corresponding
RS. A 0 in the third attribute simply means the link
should work in direct transmission mode. Hence, the
maximum matching found represents the comprehen-
sive assignment of RS, data and relay subchannels, as
well as the transmission strategy decision, therefore
optimally solves the problem.

Graph A

.

.

.

.

.

.

.

.

.

.

.

.

V1 V2

(wkj , lkj , rkj)

k

j

1

2

1

2

Fig. 4. The graphical model to show the equiva-

lence of NO-XOR resource allocation problem (5.4) and

weighted bipartite matching. Dotted vertices are void

vertices patched. Not all links are shown here.

Several good polynomial-time algorithms exist for
solving the bipartite matching problem, of which the



Hungarian algorithm [34] is a popular choice. Since
the graph construction is O(|ζ|2 · |L| · |ψ|), the entire
algorithm is polynomial time.

5.3 A Power Allocation Algorithm

Finally, we turn our focus to the power allocation
problem. Recall that the power limited versions of
RSS-XOR and NO-XOR are proposed in Sec. 4.4. Con-
sider the power limited RSS-XOR problem. Readily
we can see that it can be decoupled into the same
application layer subproblem as (4.12), and a physical
layer resource allocation of the following form, which
includes now an additional power constraint (4.7):

max
x,y,z

∑

l∈L

λldl

s.t. (4.2), (4.3), (4.4), and (4.7) (5.6)

Therefore Algorithm 1 can be used to solve it, pro-
vided that we can solve the physical layer subproblem
(5.6). In this section, we develop a dual method to
solve (5.6) efficiently.

Introduce an Lagrangian multiplier vector µµµ to the
power constraint (4.7) and the dual problem becomes

min
µµµ≥0

g(µµµ) (5.7)

where

g(µµµ) =max
∑

l∈L

λldl +
∑

r∈ψ

µr

(

Pr −
∑

l,c,cr

p
r,c,cr
l

−
∑

s,ci,cj ,cr

pr,ci,cj ,crs

)

s.t. (4.2)–(4.4). (5.8)

Since each MS s corresponds to two links, we can
equally split power used for XOR-CD p

r,ci,cj ,cr
s to

these two links without violating the power con-
straint. Mathematically, we let

p
r,ci,cj ,cr
l =

{

1
2p
r,ci,cj ,cr
s if s =M(l);

0 otherwise.
(5.9)

The objective function of (5.8) can then be written as

max
∑

l

(

λldl−
∑

r,c,cr

µrp
r,c,cr
l −

∑

r,ci,cj ,cr

µrp
r,ci,cj ,cr
l

)

+
∑

r

µrPr. (5.10)

∑

r µrPr is constant in (5.10) since µµµ is given for each
instance of g(µµµ). So solving the optimization (5.8) is
equivalent to solving the following:

max
∑

l

(

λldl −
∑

r,c,cr

µrp
r,c,cr
l −

∑

r,ci,cj ,cr

µrp
r,ci,cj ,cr
l

)

s.t. (4.2)–(4.4). (5.11)

Compared with the original RSS-XOR physical
layer subproblem (4.13), the only difference is the
objective function which now includes the cost of

power. µµµ can be interpreted as a pricing variable
vector for relay power. (5.11) can be thought of as
maximizing the total throughput revenue minus the
total cost of relay power used, given the current
prices of power at RS. This is easily decomposed into
maximization over every possible set of data and/or
relay channels. Therefore, it can be solved using the
Algorithm 3 in Sec. 5.1, with the weights being the
maximum throughput revenue discounted by power
cost instead of the maximum revenue only. For ease of
exploration, we dictate that the relay power for each
cooperative session is set to the threshold value as
derived in Sec. 3.4.2 and 3.4.3. Then,

w(ci,cr) = max
l,r

λlR(ci, cr, r, p
r,ci,cr
l , l)− µrp

r,ci,cr
l ,

w(ci,cj ,cr) = max
s,r

∑

l:s=M(l)

λlR(ci, cj , cr, r, p
r,ci,cj ,cr
s , s)

−µrp
r,ci,cj ,cr
s .

After solving (5.11), the dual problem (5.7) can
be readily solved via a subgradient method which
repeatedly updates the power prices according to the
demand and supply relationship at RS to regulate the
power consumption. To summarize, the algorithm for
solving the power limited RSS-XOR problem works
as shown in Algorithm 4. Notice that the subgradient

Algorithm 4 Algorithm for solving (5.6).

1. Initialize µ(0)µ(0)µ(0).
2. Given µ(k)µ(k)µ(k), solve the maximization problem (5.11)

using Algorithm 3. Obtain the solution values
p̂
r,c,cr
l and p̂

r,ci,cj ,cr
l , and the maximal independent

set Ŝ.
3. Perform a subgradient update for µµµ, where ν(k)ν(k)ν(k)

follows a diminishing step size rule:

µ(k+1)
r =

[

µ(k)
r −ν

(k)
r

(

Pr−
∑

l,c,cr

p̂
r,c,cr
l −

∑

l,ci,cj ,cr

p̂
r,ci,cj ,cr
l

)

]+

4. Return to step 2 until convergence.
5. Assign channels to RS and links by searching the

entries in Tassign corresponding to the sets present
in Ŝ found in step 4.

algorithm is suitable for distributed implementation
across RS. Each RS is able to verify its power con-
sumption, and update its own relay power price
autonomously according to ν(k)ν(k)ν(k) informed by BS. The
updated prices can be transmitted to the BS with a
negligible amount of overhead. The dual method for
power limited NO-XOR problem can be developed in
a similar way.

6 PERFORMANCE EVALUATION

We dedicate this section to evaluating the perfor-
mance of our algorithms using simulations. Recall



that we use the proportional fairness utility function
Ul(dl) = ln dl for each link l as mentioned in Sec. 4.1.

6.1 Simulation Setup

We first introduce the simulation setup. The key of our
experiment settings is to derive the achievable data
rate of a subchannel when it is allocated to a particular
MS, which requires computing the SNR value. We
rely on the wireless channel simulator called Chsim

[35] to generate realistic SNR results under different
channel and mobility models, and adopt empirical
parameters explained below to model the wireless
fading environment.

The subchannel bandwidth is set to be 312.5 kHz.
Data subchannels are centered at 5 GHz, while relay
subchannels are centered at 2.5 GHz. The channel
gain between two nodes at each subchannel can be
decomposed into a small-scale Rayleigh fading com-
ponent and a large-scale log normal shadowing with
standard deviation of 5.8 and path loss exponent
of 4. The inherent frequency selective property is
characterized by an exponential power delay profile
with delay spread 15 µs. The time selective nature is
captured by Doppler spread, which depends on the
MS’s speed. Throughout the simulation the MS are
moving with speed uniformly distributed from 1 to 5
m/s according to random waypoint model with zero-
second pause period.

Without loss of generality, the gap to capacity Γ
is set to 1, meaning that for a given instantaneous
channel gain, the physical layer codewords adaptively
operate at the instantaneous achievable rate of the re-
lay protocol. This implies that an ideal adaptive mod-
ulation and coding scheme (AMC) is implemented. Γ
can also be set to a value larger than 1 to reflect the
gap between physical layer implementation and the
theoretical result. The power constraint for each trans-
mission is such that P

N0W
=23 dB. This corresponds

to a medium SNR environment. Such an experimental
setup is commonly used in related studies [25], [26].

6.2 Performance of XOR-CD

We first evaluate the performance of XOR-CD using
Algorithm 1 with Algorithm 3. We compare it to con-
ventional CD using Algorithm 1 with the Hungarian
algorithm [34]. We focus on the scenario where 10 MS
are randomly located in a cell with a 100-meter radius.
We set the number of data subchannels to be 100,
and that of relay subchannels to be 30. For fairness
130 subchannels are used for the simulation of direct
transmission. 1 RS is deployed in the cell.

Fig. 5 plots the network throughput for one second,
with a sampling period of 5 ms. The optimization
therefore is done for 200 times. We can clearly see that
XOR-CD outperforms conventional DF cooperative
diversity by around 30%. This is as expected, because
XOR-CD conserves relay channels that can be utilized
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to support more cooperative sessions. To further il-
lustrate its superiority in this aspect, we study XOR-
CD’s relaying resource efficiency. We evaluate power
efficiency defined as the ratio of throughput improve-
ment over direct transmission and the amount of
relay power used. Since we assume a fixed power for
each relay subchannel without power allocation, this
amounts to

power efficiency =
throughput improvement (%)

number of relay subchannels
.

As seen in Fig. 6, XOR-CD’s power efficiency is sig-
nificantly better than that of conventional CD.

Finally, we notice that the conventional diversity
scheme alone provides over 20% improvement com-
pared with simple direct transmission. This diversity
gain is similar to the network coding gain, which fur-
ther confirms the advantage of XOR-CD to “double”
the diversity gain without significant costs.

6.3 Effects of Relaying Resources

Next, we study the effects of relaying resources on
the performance of XOR-CD. We focus on two kinds
of resources: RS and relay subchannels. Fig. 7 and
Fig. 8 show the results, respectively. Intuitively, more
RS provide better chances for MS to find a nearby



RS with better relay channel qualities. More relay
subchannels also enable more cooperative sessions to
take place. Clearly, these two factors contribute to
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Fig. 7. Effects of the number of RS. Number of relay

subchannels is 20, number of data channels is 100,

number of MS is 10, and cell radius is set to be 100m.
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Fig. 8. Effects of the number of relay channels. Num-

ber of RS is 3, number of data channels is 100, number

of MS is 10, and cell radius is set to be 100m.

the increasing throughput reflected in Fig. 7(a) and
Fig. 8(a). XOR-CD consistently maintains a 20%–30%
gain over conventional CD.

Interestingly, when it comes to the power efficiency
as defined in Sec. 6.2, we observe a clear discrepancy
between the two kinds of resources. When we increase
the number of RS, the total amount of relay power
used is unchanged since the total number of relay
subchannels, and thus the total number of cooperative
sessions, is unchanged. Thus, the power efficiency
is improved as shown in Fig. 7(b). However, when
we increase the number of relay subchannels, the
total amount of relay power used is proportionally
increased, and efficiency is actually decreasing in
Fig. 8(b). This is because the optimization always tries
to exploit the largest performance gains first, which
leads to the diminishing marginal gain of using more
relay subchannels and thus relay power. This obser-
vation suggests that we could use a small amount of
relaying resources to obtain a reasonably satisfactory
improvement.

6.4 Effects of Path Loss

Intuitively, path loss increases when we increase the
cell radius, and relaying becomes more beneficial

for improving the throughput. This intuition is con-
firmed in Fig. 9, which plots the total throughput
improvement of XOR-CD over conventional CD with
different values of cell radius. We observe that as
cell radius increases from 100m to 300m, the through-
put improvement also increases from around 40% to
around 70%. We have conducted simulations with
conventional CD and observed the same trend. This
observation suggests that relaying in general is more
helpful for networks that are limited by path loss.
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6.5 Convergence and Duality Gap

It is necessary to examine the convergence speed of
our algorithms based on the subgradient methods.
Fig. 10 plots the empirical CDF of convergence itera-
tions of Algorithm 1 for both RSS-XOR and NO-XOR
problems. We observe that it takes on average around
180 iterations to solve the RSS-XOR problem, and
around 130 iterations to solve the NO-XOR problem.
No more than 220 and 157 iterations are needed
for solving the RSS-XOR and NO-XOR problems,
respectively. We believe that such a computation bur-
den is affordable for typical base stations with ever-
increasing computational power.

We also examine the duality gap of our problem as
a result of the finite number of OFDM subchannels.
Since the RSS-XOR problem (4.5) is an NP-complete
integer program with a non-linear objective function,
we estimate its primal optimum by using the CVX
solver [36] to solve (4.5). We plot the performance
gap between CVX and our subgradient method with
Algorithm 3 that provides the dual optimum. The
number of data subchannels is fixed at 100, and that
of relay subchannels is set to 30, 60, and 90. Table. 3
shows the estimated duality gap. We observe the
gap is indeed small and decreasing as the number
of channels increases. This demonstrates the validity
of solving the optimization in the dual domain. Note
that CVX is significantly slower than our algorithms.

6.6 Performance of Power Allocation

Finally, we evaluate the performance of our power
allocation algorithms. We implement the subgradient



TABLE 3

Estimated duality gap.

# of relay subchannels 30 60 90
Performance gap 5.46% 4.80% 4.24%

based Algorithm 4 for the RSS-XOR problem, as well
as its counterpart for the NO-XOR problem. We en-
force a uniform power constraint across RS. Each RS
has relay power NP , where P is the power used
for one direct transmission as in Sec. 3.4.1. We vary
N from 10 to 100 and obtain Fig. 11. We observe
from Fig. 11(a) that XOR-CD is less sensitive to power
constraints as reflected by the marginal improvement
compared to conventional CD. This is because XOR-
CD utilizes power more efficiently, resulting in a
lower power demand at RS. Therefore, pumping more
power does not improve its performance substantially.
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Fig. 11. Effects of power constraints for a 100m cell

with 100 data subchannels, 30 relay subchannels, 10

MS, 3 RS.

We also evaluate the effect of power allocation
on relay power efficiency, which now is calculated
by dividing the throughput improvement (in %) by
N , the per RS relay power. The result is shown in
Fig. 11(b). We observe that, expectedly, relay power
efficiency is decreasing due to the intelligent power
allocation that always maximizes the throughput gain
under a fixed power budget. XOR-CD consistently
provides better power efficiency up to the point that
relay power is abundant for the conventional CD to
achieve the same throughput gain (the two lines in
Fig. 11(b) converge as N increases).

TABLE 4

Throughput values of different relay power profiles.

Relay power profile: Throughput Improvement
RS1 RS2 RS3 (Mbps) (%)
10P 10P 10P 6.69 —
15P 9P 6P 6.93 3.58
15P 6P 9P 6.91 3.29
18P 7P 5P 7.14 6.73
18P 5P 7P 7.11 6.28

The convergence speed of our power control algo-
rithms is much slower since they involve a nested
subgradient update loop. In our simulations, we find
that Algorithm 4 with Algorithm 1 for the power con-
trol version of the RSS-XOR problem takes on average

around 1500 iterations to solve, which may not be
feasible for practical use. Given that power allocation
yields marginal improvement for both XOR-CD and
conventional CD as discussed above, in most cases
it is sufficient to adopt the simple uniform power
allocation across mobile stations.

We finally study non-uniform power constraints at
RS. For the same configuration and network topology
with 3 RS, we fix the total power constraint to be
30P and vary individual RS’s power constraint. Table
4 summarizes the results of different relay power
profiles. Observe that allocating more power to RS1
has a positive effect on the average throughput, while
adjusting the constraints of RS2 and RS3 does not.
The reason is that in our simulation RS are randomly
located inside the cell. RS1 is located closest to the BS,
providing a much better relay channel for cooperative
transmissions. Allocating more power to RS1 boosts
its relaying capacity and improves throughput. The
result also suggests that power allocation at RS needs
to be location-adaptive to best utilize resources.

It is possible to consider the optimization of relay
power budget in our framework. We only need to
change the relay power budget Pr from a constant
to a new variable, and add a new total power con-
straint across all the Pr:

∑

r Pr = PR. Solving the
relay power budget optimization is technically more
involved. Subgradient methods can still be used by
relaxing the additional constraint, but the convergence
of the algorithm will be negatively affected. Since the
performance gain of relay power budget allocation is
marginal as shown in Table 3, we do not to discuss
this issue in detail here.

7 CONCLUSION

This work represents an early attempt to study net-
work coding assisted cooperative diversity in multi-
channel cellular networks. We presented XOR-CD,
a simple cooperative diversity scheme with XOR in
OFDMA networks. As our main contribution, we
proposed a unifying optimization framework based
on network utility maximization to exploit multi-user
diversity, cooperative diversity and network coding
jointly. We established the hardness of the decoupled
resource allocation problem in the physical layer,
and proposed efficient approximation and optimal
algorithms. Simulation results demonstrated that net-
work coding has the potential to significantly improve
throughput of OFDMA networks.
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