
Abstract
Self-adaptive systems modify themselves at run-time in
order to control the satisfaction of their requirements
under changing environmental conditions. Over the past
century, feedback-loops have been used as important models
for controlling dynamic behavior of mechanical, electrical,
fluid and chemical systems in the corresponding fields of
engineering. More recently, they also have been adopted
for engineering self-adaptive software systems. However,
obtaining sound and explicit mappings consistently between
adaptive software architectures and feedback loop elements
is still an open challenge. This paper, recalling a reference
model proposed previously with that goal, discuss key aspects
on the design of adaptive software where feedback loop
elements are explicitly defined as first-class components in
its software architecture. It complements this discussion with
an illustration of the process to use this reference model by
applying it to a plausible adaptive software example. This
paper aims at providing a reference starting point to support
software engineers in the process of designing self-adaptive
software systems.

Resumen
Ante condiciones cambiantes del entorno, los sistemas
autoadaptativos pueden modificarse a sí mismos para controlar
la satisfacción de sus requerimientos en tiempo de ejecución.
Durante el siglo pasado los sistemas de retroalimentación
fueron importantes modelos para controlar el comportamiento
dinámico de sistemas mecánicos, eléctricos, de fluidos y
químicos, en sus respectivos campos de la ingeniería. Más
recientemente fueron adoptados para diseñar software
autoadaptativo. No obstante, lograr mapeos coherentes
y explícitos consistentemente entre las arquitecturas
de software adaptativo y los elementos de sistemas de
retroalimentación es aún un reto abierto. Este artículo, sobre
un modelo de referencia propuesto con ese propósito, discute
aspectos clave del diseño de software autoadaptativo, en que
los elementos de sistemas de retroalimentación se definen
explícitamente como componentes de primer nivel en su
arquitectura. Adicionalmente, ilustra la aplicación de este
modelo de referencia a un ejemplo real de software adaptativo.
El artículo ofrece a los ingenieros de software un punto de
referencia para iniciar el diseño de software autoadaptativo.

Keywords
 Self-adaptation; reference models

for self-adaptation; self-adaptive
software; control loops.

Palabras clave
Autoadaptación; modelos de

referencia para auto-adaptación;
software auto-adaptativo; bucles

de control.

2

Fecha de recepción: Agosto 16 de 2011

Fecha de aceptación: Septiembre 13 de 2011

Norha M. Villegas
Ph.D Candidate

Department of Computer Science
University of Victoria, British Columbia (Canada)

nvillega@cs.uvic.ca

Hausi A. Müller, Ph.D.
Associate Dean of Research Department of

Computer Science
University of Victoria, British Columbia (Canada)

hausi@cs.uvic.ca

Gabriel Tamura
Profesor Tiempo Completo

Facultad de Ingeniería
Universidad Icesi, Cali (Colombia)

gtamura@icesi.edu.co

Citación: Villegas, N., Müller, H.A., & Tamura, G. (2011). On Designing Self-Adaptive
Software Systems. Revista S&T, 9(18), 29-51.

On Designing Self-Adaptive Software Systems
Diseño de software autoadaptativo

Artículo de reflexión

29

30 www.icesi.edu.co/sistemas_telematica

Villegas, N., Müller, H.A., & Tamura, G. (2011). On Designing Self-Adaptive Software Systems.

I. Introduction
Traditional software engineering has been based on an incorrect set of goals, where
software systems are expected to support rigid and stable business structures,
have low maintenance, and ensure complete user acceptance. Truex, Baskerville, &
Klein (1999) criticized this user-satisfaction emphasis and questioned the economic
advantages of lengthy analysis in the engineering of software systems. In light
of this, they identified the necessity of new software engineering models based on
permanent analysis, dynamic requirements negotiation, and incomplete requirements
specification. In this setting, a new kind of software systems is emerging, whose
development can be seen as a continuum of short term adaptations and long term
evolution (Cheng et al., 2009; de Lemos, Giese, Müller, & Shaw, 2011; Oreizy,
Medvidovic, & Taylor, 2008). As part of this continuous adaptation and evolution,
system analysis is performed continuously, and in parallel with system operation
and maintenance. Furthermore, system requirements satisfaction is regulated and
controlled by continuously adjusting or enhancing system behavior (Giese et al.,
2009).

Such dynamic systems adapt in response to changes in their environments,
either to ensure the continuous satisfaction of their functional and non-functional
requirements, or to provide ubiquitous and context-dependent smart services. In any
case, this adaptation must be performed while preserving the contracted quality of
service (QoS) conditions and desired adaptation properties (Villegas, Müller, Tamura,
Duchien, & Casallas, 2011). These quality conditions are usually represented in the
form of service level agreements (SLA), and their enforcement mechanisms are
based on contracts and policies (Tamura, Casallas, Cleve, & Duchien, 2011).

Over the past century, the feedback-loop model from control theory has been used
extensively in many diverse fields and application domains of engineering, with
substantial advances and results, for instance automating the control of industrial
processes (Ogata, 2010). In the first decade of the new century, IBM researchers
proposed the notion of an autonomic element as a building block for self-managing
systems, in the form of a monitoring-analysis-planning-execution and shared
knowledge (MAPE-K) loop that controls a managed computing element (IBM, 2006;
Kephart & Chess, 2003). Many researchers have recently proposed similar software
architecture constructs and applied these concepts to engineer self-adaptive, self-
organizing and self-managing software systems (Salehie & Tahvildari, 2009).
Nonetheless and despite the acknowledgment on the importance of the feedback-
loop, its visibility as the crucial architectural element to drive adaptation in software
systems remains often hidden. This is in part due to the software flexibility, which
in general does not enforce separation of concerns between adaptation mechanisms

31

Revista S&T, 9(18), 29-51. Cali: Universidad Icesi.

and managed (controlled) software systems. Thus, it is common that software
architectures highlight abstractions related to the functional requirements of the
system, having feedback-loop elements blurred in them. In this setting, making
and maintaining visible the feedback-loop elements and the feedback-loop itself in
self-adaptive software architectures remains an open challenge (Giese et al., 2009;
Hellerstein, Diao, Parekh, & Tilbury, 2004; Müller, Kienle, & Stege, 2009).

In this paper we illustrate how to design an adaptive software system where the
feedback loop drives its architecture, and moreover, where feedback loop components
are explicit in this architecture. This illustration is based on the reference model
for the engineering of self-adaptive software systems proposed in a previous work
(Tamura, Villegas, Müller, Duchien, & Casallas, 2011). This illustration aims at
providing software engineers with a starting point for the engineering of self-
adaptive software systems (Frincu, Villegas, Petcu, Müller, & Rouvoy, 2001). Our
reference model allows the design of software architectures where the different
feedback loops required to guarantee system properties through adaptation are
directly implementable, by making explicit: (i) the management of self-adaptive
properties as the control reference goals; (ii) the separation of control concerns by
decoupling the different feedback-loops required to achieve the reference goals over
time; and (iii) the specification of context management as an independent control
function to monitor and preserve the contextual relevance, taking into account
internal and external context changes.

The remainder of this paper is organized as follows. Section 2 reviews the classical
theory of control systems and the feedback loop’s structural and behavioural
elements. It also describes the illustrative example used throughout the paper.
Section 3 introduces the application of feedback loops to the engineering of self-
adaptive systems. Sections 4 and 5 present, respectively, an overview of our proposed
reference model and its application to the illustrative example. Section 6 discusses
similar works on the application of feedback loops to the engineering of self-*
systems. Finally, Section 7 concludes the paper and outlines directions for future
work

II. Control Theory
In control theory, the feedback loop —or closed loop— is the cornerstone structure
for building controllers for different kinds of dynamic systems, such as mechanical,
electrical, fluid and chemical. Moreover, they provide the basis for automated control
in diverse fields of engineering, and for self-adaptation in computing and software
engineering (Müller, Pezzè, & Shaw, 2008). The feedback loop structure, as depicted
in the so-called block diagram of Figure 1, performs dynamic control by comparing
measured outputs of the target system behaviour to the control objective given as

32 www.icesi.edu.co/sistemas_telematica

Villegas, N., Müller, H.A., & Tamura, G. (2011). On Designing Self-Adaptive Software Systems.

reference input, yielding the control error, and then adjusting the controlling signals
accordingly for the target system to behave closer to this reference input (Ogata, 2010).
The measured output can also be affected by external disturbances or even by the noise
caused by the system adaptation. Transducers adapt the signals measured by sensors,
as required by the comparison element.

In order to keep objectives controlled in a target system, several strategies have been
proposed. The three most common strategies are (i) the regulatory control, which ensures that
the measured output is as close as possible to the reference input; (ii) the disturbance rejection,
whose main goal is to control the effects of disturbances on the measured output; and (iii)
the optimization, which permanently seeks to obtain the best value of the measured output,
as effectively as possible. These strategies constitute minor variations on the controller
element, as they are realizable with no structural changes in the block diagram.

For instance, Figure 2 represents a typical time-response behaviour shape for a
temperature control system with a regulatory control strategy. The target system
behaviour is shown in terms of the signals to be controlled (e.g., the X-axis represents
the time dimension and the Y-axis the measured water temperature in Celsius degrees).
The system starts in a normal state, that is, stabilized around 26.67 at minute 33 of
the industrial process to be controlled. Around minute 35.5, the system is affected by
a disturbance input heating up the temperature (e.g., hot water is added or cool water
is drained), and a new reference input is set to 26.92. With this disturbing event, the
difference between the measured output and the new reference input is used by the
feedback loop controller to drive the system adaptation into these new conditions, by
continuously computing suitable control input signals and feeding them back to the
system until it re-gains a normal, stable state, around minute 45. Transducer elements
might be necessary when, for instance, the measured units of the control reference
input and the measured system output are different.

Figure 1. Classical block diagram of a single-input, single output (SISO) feedback
control system (Hellerstein, Diao, Parekh, & Tilbury, 2004)

33

Revista S&T, 9(18), 29-51. Cali: Universidad Icesi.

Figure 2. Typical time response for temperature control using a proportional, integral,
derivative (PID) controller which is the workhorse of industrial control engineering

To compute the controlling signals, there are several possible mechanisms. In control
theory, the representative mechanism is the system transfer function, a mathematical
model built on the structure of the feedback loop block diagram. Depending on the
behavioural characteristics of the system to be controlled, a system transfer function
is built with proportional, derivative and integral (PID) terms. The parameters in a
PID controller have special significance; there are many sophisticated methods for
tuning the constants in this kind of controller.

Although the application of the theory of controlling industrial processes is well
understood, its application to controlling software systems has at least two significant
challenges: first, its main adaptation mechanism is modeled on continuous mathematics,
and second, it relies on measures taken from and actions performed into physical, self-
performing artifacts (e.g., sensors, gauges and valves/actuators for temperature, or
pressure). As these physical variables are in the continuous-time domain, the use of
continuous mathematics in this theory fits perfectly. In contrast, software systems are
composed of intangible artifacts with discrete-time behaviour. Thus, direct sensing
must be performed also by CPU-dependent software artifacts, and the adaptation
mechanisms must reason on their discrete-time output. Moreover, to fully exploit the
possibilities of software adaptation, the output of the adaptation mechanism must
be more structured than controlling signals to be transduced by electro-mechanical

34 www.icesi.edu.co/sistemas_telematica

Villegas, N., Müller, H.A., & Tamura, G. (2011). On Designing Self-Adaptive Software Systems.

devices. This output may take the form, for example, of a plan of ordered actions to be
instrumented by software actuators on the target software components. Fortunately,
there is the theory of linear discrete-time systems, which closely resembles the theory
of linear continuous-time systems. Nonetheless, achieving in the software domain
the maturity level reached by control theory in modeling the behaviour of physical
systems is one of the most challenging problems of self-adaptive software (Hellerstein,
Singhal, & Wang, 2009).

To illustrate the elements of our reference model and its application throughout the
paper, we next introduce a hypothetical, yet plausible, context-based adaptive system
example. In this example we analyze and map the control theory concepts to dynamic
software adaptation concepts.

A. An illustrative example
The example we use to discuss the elements of our approach is a smart system for

managing hotels or congress centers to host conferences or group meetings. In this
case, suppose a conference is held at the Colombian Conference Center, from Sep. 27 to
Oct. 1, 2011 in Cartagena. The conference center is supposed to provide a ubiquitous
system to assist with the logistics of the conference and the guest’s activities during
the event. Conferences are registered in the system as soon as their contract is agreed.
The registration involves the configuration of important conference information
such as start date, duration, agenda, language, community profile, or Internet access
requirements. The contract agreement includes conditions related to the system
properties, such as performance on rush hours, for supporting the conference activities.
In this hypothetical example, the conference organizers anticipate a large turnout. As
a result, in order to ensure a comfortable registration process for its delegates, they
require guarantees for maximum processing time per registration request. The conference
organizers accept and subscribe to the service provider offering a service level
agreement that guarantees a maximum processing time of three seconds per request
from 8:00 am to 10:00 pm, and six seconds from 10:01 pm to 7:59 am, for the two days
at the beginning of the conference.

III. Feedback Loops and Adaptive Software Systems
Self-adaptive software systems are systems able to adapt their behaviour or
structure at run-time (Oreizy et al., 2008; Salehie & Tahvildari, 2009). Self-
managing systems are instances of self-adaptive software systems that adapt
themselves according to administration goals (Kephart & Chess, 2003). Context-
aware, ubiquitous and user-centric applications are examples of self-adaptive
systems where the system behaviour is tailored according to users locations and
preferences (Coutaz, Crowley, & Dobson, 2005; Chignell, Cordy, Ng, & Yesha,

35

Revista S&T, 9(18), 29-51. Cali: Universidad Icesi.

2010; Villegas et al., 2011a). To realize continuous adaptation and evolution,
system analysis is performed continuously and in parallel with system operation
and maintenance, and system requirements satisfaction is regulated and
controlled by continuously adjusting or enhancing system behaviour according
to environmental conditions. Self-adaptation can be static or dynamic. In static
self-adaptation, adaptation mechanisms are explicitly defined by the designers for
the system to choose from, during execution; whereas, in dynamic self-adaptation,
adaptation plans and monitoring requirements must be produced and selected by
the system at run-time (Müller et al., 2009).

As mentioned, in the first decade of the new century, IBM researchers proposed
the notion of an autonomic element as a building block for self-managing systems in
the form of a monitoring-planning-execution and shared knowledge (MAPE-K) loop
(cf. Figure 3). This loop is the basic block to support self-adaptation in controlling a
managed computing element (IBM, 2006; Kephart & Chess, 2003). In the first phase
of the MAPE loop —monitoring, monitors gather and process context information
from the environment that is relevant to the adaption process. This monitored
information is sent then to the second phase, analysis, where analyzers correlate
context information to infer symptoms about the execution environment and the

Figure 3. The MAPE-K loop (IBM, 2006; Kephart & Chess, 2003)

36 www.icesi.edu.co/sistemas_telematica

Villegas, N., Müller, H.A., & Tamura, G. (2011). On Designing Self-Adaptive Software Systems.

system behaviour. In the third phase, planning, planners use analyzed symptoms
to define adaptation plans accordingly. In the last phase of the loop —execution,
executors implement and execute plans to adapt the actual system and obtain the
desired behaviour. The monitoring phase continuously feeds the adaptation loop
back, restarting the cycle. A knowledge base supports the information flow required
throughout the whole cycle.

The necessity of making explicit feedback-loop elements in the engineering of
self-adaptive software systems has been identified by several recent investigations in
the software engineering community (Cheng et al., 2009; Giese et al., 2009; Müller
et al., 2008). On one hand, Müller et al. (2008) analyze the benefits of specifying
the feedback loops and their major components explicitly and independently, as
well as the necessity of defining explicitly the interactions among feedback loops
and among their elements, from analysis and design to implementation. Giese et al.
(2009) also argue on the benefits of decoupling feedback loops in control-based
reference architectures to address the satisfaction of quality attributes (control
objectives), the management of the context complexity and the interactions among
multiple feedback loops and their elements. Cheng et al. (2009) also emphasize the
importance of making explicit not only the feedback loops but also their elements
and properties. On the other hand, the behaviour of the adaptive system and its
components is highly dependent on the changing context information that defines
the execution environment. Thus, improving context-awareness in self-adaptation
by understanding, managing, and controlling context information via run-time
monitoring has been identified as a promising research direction toward the
engineering of reliable and efficient adaptive software systems (Lemos et al., 2011;
Villegas & Müller, 2010).

Self-adaptation in software systems can take different forms (Villegas et al., 2001b).
Nevertheless, feedback loops, although generally defined implicitly, are at the core
of self-adaptive software systems as they adapt their behaviour to keep objectives
controlled based on either regulatory control, disturbance rejection or optimization
requirements (Müller et al., 2009b). For this, feedback loops provide instrumentation
to sense the execution environment, model the system behaviour in that environment,
and execute actions to change the environment or the system behaviour. Moreover,
as depicted in Figure 4, the architectural components of the MAPE-K loop can
be mapped to the elements of the feedback loop studied in control theory, but
for controlling dynamic adaptation in a software system (Hebig, Giese, & Becker,
2010; Müller et al., 2008; Tamura et al., 2011b) The elements in Figure 4 clearly
resemble the ones of the MAPE-K loop, but with their roles and interrelationships
made explicit. This mapping constitutes the foundational structural and behavioural
aspects for our reference model (Tamura et al., 2011b).

37

Revista S&T, 9(18), 29-51. Cali: Universidad Icesi.

Figure 4. SISO feedback control block diagram with explicit functional elements and
corresponding interactions to control dynamic adaptation in a software system.

IV. The Reference Model for Self-Adaptive Software
Systems

Figure 5 illustrates the reference model for designing self-adaptive software systems
presented in Tamura et al. (2011b). An adaptive system can be defined as a set of
cooperating feedback loops that ensure the achievement of the system objectives. Thus,
according to our reference model, a self-adaptive system is designed as a collection
of cooperating control objective managers, adaptation control loops, and context
manager control loops to control the adaptation process.

Our reference model can be combined with other reference models for adaptive
systems. In particular, the IBM architectural blueprint provides the ACRA model to
orchestrate control loops hierarchically for autonomic systems (IBM, 2006; Kephart
& Chess, 2003). Similarly, our reference model can be organized hierarchically to
orchestrate control and include manageability endpoints to facilitate communication
between levels. Furthermore, the distribution of the feedback loops and their elements
themselves in different machines should be possible. Shared knowledge bases, as the
ones proposed for the MAPE-K loop, also facilitate interactions among control loops.
Such knowledge bases could store historical information such as symptoms, as well as
internal and external context facts required for the analyzers in each type of control
loop. Moreover, these persistence mechanisms help maintain contracts and policies to
achieve the control objectives. Finally, contracts enable the controllers to reason about
goals and agreements to determine the control actions.

The following subsections summarize selected design drivers for the application of
our reference model.

A. Separation of Concerns
Analyzing our reference model (cf. Figure 4) from a combined control theory and

software architecture point of view, for a software system (target system) to become self-

38 www.icesi.edu.co/sistemas_telematica

Villegas, N., Müller, H.A., & Tamura, G. (2011). On Designing Self-Adaptive Software Systems.

Figure 5. Reference model for context-based self-adaptive systems (Tamura et al.,
2011b). The context manager feedback loop supports the adaptation for a system to
keep fulfilling its control objectives in a dynamic environment. Signals (A), (B), (C) and
(D) highlight the interactions among the feedback loops.

adaptive, it should incorporate at least three subsystems with it: (i) a control objectives
manager; (ii) a context manager (monitoring mechanism); and (iii) an adaptation mechanism.
This design separates the concerns with respect to (a) the final purpose and properties
of the target system (control objectives manager); (b) the continued fulfillment of the
system purpose, and the preservation of its properties under changing conditions of
execution (system adaptation controller or adaptation mechanism); and (c) the system
relevance according to whatever it must take into account from a new environment,
after a change of execution conditions (responsibility of the context manager).

39

Revista S&T, 9(18), 29-51. Cali: Universidad Icesi.

 Applying the reference model to the illustrative scenario outlined in Section II.A,
we clearly identify three types of adaptation, depending on the different emphasis of
feedback loop interactions: preventive, corrective and predictive. In preventive adaptation,
the context monitor notifies the adaptation analyzer about context events (context
symptoms) that are causing no effects in the target system behaviour yet, but eventually
will. For instance reaching the previous day of a registered conference beginning date
(a calendar event); that is, even though the adaptation subsystem has encountered
no disturbances yet in the target system, based on this context information it could
minimize the risks of goal disruption by performing a system adaptation (e.g., to
manage a significantly higher than normal number of registration requests per time
unit). Corrective adaptation takes place when the adaptation controller detects that
the target system is not fulfilling its control objectives (e.g., QoS agreements) by
measuring the target system behaviour. This can occur if, even in the example of
preventive adaptation, the number of requests per time unit is reaching the limits
of the new capacity after performing the adaptation. This situation requires for the
adaptation controller to perform an additional reconfiguration or to apply restrictive
usage mechanisms to prevent the system from collapsing before a new adaptation is
performed. Predictive adaptation takes advantage of both, historical information to
anticipate risks of goal fulfillment disruption, as well as symptoms that evidence the
necessity of adaptation. These symptoms might be presented in the form of patterns of
correlated events that eventually become significant evidence to advice for adaptation.
An example of this latter case is the detection of a low but frequent degradation in
the system performance near a conference start date, independently of the fact that
this date had been previously registered in the system. This continued degradation
may be caused by early registration of several groups of conference assistants, that
nonetheless is non-sensible enough for the adaptation subsystem to react.

Finally, despite this separation of concerns, the target system together with the
control objectives manager, the context manager and the adaptation mechanism, also
constitute a general feedback loop.

B. Management of Control Objectives as a Feedback Loop
The system purpose and corresponding properties are objectives whose permanent

fulfillment must be controlled through the collaboration of the adaptive and context
feedback loops. However, control objectives are also subject to change by user-level
negotiations at run-time. Therefore, they must be managed in a consistent and
synchronized way by the adaptation mechanism and the context manager.

There may be several causes for these changes. In a first case, there may be service
level agreements that, even if they have been pre-negotiated (or defined statically), they
imply changes at run-time in the system objectives (reference inputs). For instance, this

40 www.icesi.edu.co/sistemas_telematica

Villegas, N., Müller, H.A., & Tamura, G. (2011). On Designing Self-Adaptive Software Systems.

may happen when a pre-negotiated contract defines that the system must guarantee
a maximum of six seconds per request from 8:00 am to 10:00 pm, but a maximum of
12 seconds from 10:01 pm to 7:59 am, for the two days before the conference start.
In this case, whenever the context manager detects a change of time from 7:59 am
to 8:00 am within these two days, it notifies the adaptation mechanism to reconfigure
the target system architecture in such a way that the target system can support a
maximum of six seconds per request. This is a new reference input to be controlled
by the adaptation mechanism, whose achievement must be enforced by reconfiguring
the target system, analogous to the change in the set points in our initial example
of temperature control. However, the achievement of the reference inputs over time
may require a successive application of several rounds of planned actions for system
reconfiguration and corresponding measurements, until the target system effectively
achieves the required performance level.

In a second case, when the system is in execution, there may be a re-negotiation of
conditions on previously negotiated SLAs. An instance of this case would occur if a new
SLA is agreed requiring a maximum of only one second per request, for the four hours
before the conference opening. In either case, the system purpose and corresponding
properties are managed explicitly as the control objectives for the adaptive system.
Thus, ideally both, the system adaptation reference control input and the reference
context input should be automatically derived from these control objectives and fed
into the corresponding feedback loops (cf. interaction (A) in Figure 5). This automatic
derivation ensures the consistency and synchronization between these two sets of
reference inputs.

In our example, when the time changes from 7:59 am to 8:00 am, the control objectives
monitor is notified of this event. Then, the control objectives analyzer determines
that the control objectives must change according to the agreed SLAs and the control
objectives controller plan, and execute the replacement of the in force SLA of 6 seconds
per request by the SLA of 3 seconds per request. This change defines the quality attribute
or new control objective (e.g., performance), and therefore the adaptation strategy (e.g.,
architecture reconfiguration rule for deploying additional scalable software components in
spare hosts of a grid computing infrastructure). The new SLA also determines the relevant
context information that must be monitored from the environment (e.g., elapsed time
between request start and stop time-stamps), and its corresponding context management
requirements (e.g., context gathering strategies, sampling rates, measurement precision
and resolution). Thus, from this new SLA, the control objectives manager derives the
reference control inputs (quality attribute: request processing performance; set point: 6; units:
seconds) and the corresponding reference context inputs (sensor infrastructure type: logical;
sensor type: time; precision: tenths of second; minimum resolution: one tenth of second;
monitoring sampling rate: every 30 seconds).

41

Revista S&T, 9(18), 29-51. Cali: Universidad Icesi.

Finally, the dynamic adaptation of control reference inputs is addressed by closing
the control objectives manager as another feedback loop, in which the monitor receives
symptoms from the context analyzer (control error); the analyzer, planner and executor
conform the control objectives manager; and the target system is represented by the
triple: context manager, adaptation mechanism, and core controlled system.

C. Adaptation Control Feedback Loop
The adaptation control feedback loop mission is to serve as a guarantor for the

continued fulfillment of the target system purposes and corresponding properties
preservation. We refer to purpose and properties as system variables to be controlled.

To accomplish this mission, the adaptation control feedback loop follows the separation
of concerns criteria described in previous sections. In turn, these criteria conform to
the general principle of control theory, which relies on quantitative expressions to
measure the error in the controlled system variables, and a reference control input for
each of these variables. The adaptation control feedback loop continually gathers these
measurements from the target system through its adaptation monitor. This monitor
notifies control symptoms for adaptation to the adaptation analyzer, which determines
the necessity of performing a system adaptation. The simplest case for this occurs
when the measured variables under control, compared to their corresponding reference
control inputs, indicate that some control objective is not being fulfilled. Whenever it is
relevant, the adaptation analyzer notifies this fact with its corresponding information
to the system adaptation controller. With this information, the planner element selects
a strategy to adapt the system with the goal of reestablishing the fulfillment of the
violated control objective. The result of this strategy is sent as an ordered list of
system architecture reconfiguration actions, which are performed in the target system
by the executor, thus closing the control loop.

D. Context Manager Feedback Loop
The feedback loop depicted in the bottom part of Figure 5 represents the context

manager as part of the monitoring mechanism in our reference model. The reference
context input corresponds to the reference context management objectives derived from
the system control objectives. These reference inputs form the basis for the generation
of context models that represent environmental information useful for supporting
the adaptation process. In our application example, context models represent
context information types as well as different levels of granularity, constraints, and
relations among context entities, and spatial and scope information that must be
managed for guaranteeing the objectives of the ubiquitous conference system (e.g.,
sensor infrastructure type: logical; sensor type: time; precision: tenths of a second;
monitoring sampling rate: every 30 seconds). The context monitor refers to the gathering
of primary context information from the internal and the external environment

42 www.icesi.edu.co/sistemas_telematica

Villegas, N., Müller, H.A., & Tamura, G. (2011). On Designing Self-Adaptive Software Systems.

and the correlation of this information to infer either, context symptoms that can
affect the target system adaptation process, including the adaptation of the control
objectives, or control symptoms to decide about the context manager adaptation. This
information is preprocessed by the context transducer to generate numeric values from
physical and logical sensors, and determine comparable measures by performing basic
transformations. Furthermore, the context analyzer performs the context handling
process required for the context adaptation controller to decide about adapting the
context manager, and for the control objectives manager to decide about changing the
system objectives, as demanded by the adaptive system and its environment. Changes in
control objectives can be performed fully or semi-automatically, depending on whether
or not it is necessary to re-negotiate and, consequently, for the user to intervene (cf.
Section 4.2). The context adaptation controller is in charge of defining and executing the
adaptation plan for the context manager, according to its adaptation strategy. Finally,
the measured control output and the adaptive system internal context are used to
achieve the context manager goal: to support the system adaptation process and the
management of the system control objectives.

E. Feedback Loop Interactions
The decoupling proposed by our model not only supports the separation of the

corresponding feedback control loops, but also the separation of the elements within
each feedback loop. Even though control loops are designed independently of each
other, they must operate together to achieve the overall system objectives.

As depicted in Figure 5, in order to ensure the achievement of the control objectives,
our reference model specifies four interactions among its feedback loops, labeled (A),
(B), (C) and (D). We classify interactions (A) and (B) as indirect interactions because
they are realized through the control objectives manager, and interactions (C) and (D)
as direct interactions due to their direct connections between the context manager
loop and the adaptation loop.

Interaction (A) provides the reference context input (i.e., context manager objectives)
for the context manager loop to gauge the relevance of context information; decide how
to manage and provision that environmental information; and provide the reference
control input (i.e., adaptation objectives) for the adaptation controller to manage the
adaptation process for achieve the system objectives.

Interaction (B) enables the control objectives manager to decide about changes in
the control objectives, whenever the context manager detects that given the current
context, the current set of control objectives should be dynamically adjusted or re-
negotiated.

Interaction (C) is realized through context symptoms that are identified and sent
from the context monitor to the adaptation analyzer. These context symptoms can

43

Revista S&T, 9(18), 29-51. Cali: Universidad Icesi.

be in the form of events useful for decision making in the adaptation control loop.
The communication mechanism and the information associated with these symptoms
depend on the supported adaptation type (i.e., preventive, corrective or predictive).

Interaction (D) represents the internal context sensed by the context manager from
the adaptive system. Monitoring internal context information is necessary to assess
the consistency of the system after an adaptation. By analyzing internal context
information that characterizes the current state of system properties, the context
manager must be able to infer symptoms about the achievement of system goals.

V. Applying the Reference Model
According to Bass, Clements and Kazman (2003), the process of designing a concrete
software architecture for a system should start either from a reference model or
from an architectural style, or from both. In either case, the process continues with
successive refinement steps, where each step augments the previous with additional
information from further analysis of requirements in the problem domain as well as
design decisions.

To obtain a concrete self-adaptive software architecture for the conference system of
our hypothetical example, we follow this step-wise refinement process, starting from
our reference model. An intermediate refinement step is obtained by mapping and
incorporating the reference model elements into the conference system components.
Figure 6 illustrates this refinement step by using contracts as system control objectives,
and SLAs as reference control inputs. We also assume that in this case the context
manager is not required to be self-adaptive.

Through further refinement, we obtain a concrete software architecture for our
conference management system, the UML deployment diagram depicted in Figure 7.

To illustrate the system behaviour, assume that the system has been configured to
accept registration requests just for two days before the conference start day. Thus, for
this conference, the mission of ControlObjectivesManager is to preserve four performance
SLAs: (i, ii) three seconds per request from 8:00 am to 9:59 pm and (iii, iv) six seconds
from 10:00 pm to 7:59 am on Sep. 25/26.

ControlObjectivesManager, once notified through its contextSymptoms port of the 8:00
am beginning-of-conference-registration time-event on Sep. 25 by the ContextMonitor
component, sets the SLA of three seconds per request and the corresponding
SLAContextRequirements reference control inputs for the adaptation and context
monitors, AdaptMonitor and ContextMonitor respectively. Periodically, these two
concurrent components monitor the collected system measurements from the
ManagedConferenceSystem’s sensorSystPolling port. However, both components monitor
the target system at different rates.

44 www.icesi.edu.co/sistemas_telematica

Villegas, N., Müller, H.A., & Tamura, G. (2011). On Designing Self-Adaptive Software Systems.

Figure 6. The reference model elements mapped into the conference management
system components. Note that the context manager is not self-adaptive.

AdaptMonitor signals corrective adaptation symptoms to the AdaptAnalyzer based on
comparisons between the system measurements and reference control inputs, either in a
stabilized and normal system state, or immediately after a system adaptation, during the
stabilization phase. ContextMonitor provides the AdaptAnalyzer with (i) predictive adaptation
symptoms, based on the recognition of behavioural adaptation; or with (ii) preventive
adaptation symptoms, based on context events gathered by the ContextGathering components.

Whenever AdaptAnalyzer determines that a system adaptation is required, it provides
the corresponding context information to the AdaptController component. With this
information, AdaptController requests a system architecture reconfiguration plan from the
ArchReconfRuleSystem, and then sends the reconfiguration actions to ReflectionInfrastructure
for execution. To achieve better SLA performance over time, one plausible architecture

45

Revista S&T, 9(18), 29-51. Cali: Universidad Icesi.

Figure 7. Simplified software architecture for the conference management system
derived from our reference model. The visibility of the feedback control loops is clearly
maintained and mappable to the detailed design documents and the source code

46 www.icesi.edu.co/sistemas_telematica

Villegas, N., Müller, H.A., & Tamura, G. (2011). On Designing Self-Adaptive Software Systems.

reconfiguration rule would re-deploy the ConferenceRegistProcessor component of
Figure 7 and deploy additional ConferenceRegistProcessor components, each one on new
additional hosts, then reconnecting the corresponding components.

Finally, the ConferenceRegistration component receives registration requests from
WebBrowser clients. The ConferenceRegistration component redirects them to the
different ConferenceRegistProcessor components for processing.

VI. Related Work
This section presents evidence of the application of feedback loops to concrete
implementations of adaptive software systems. However, as concrete implementations,
they are not necessarily examples of reference models. On the contrary, these cases
evidence the necessity of providing reference models with explicit application
guidelines, such as the one we illustrate in this paper.

A first example of concrete implementations is the self-healing system developed
by Garlan, Cheng and Schmerl (2003). Their system architecture maps directly to the
feedback control architecture proposed by Müller et al. (2008), even though not all of
the control loop elements are made explicit. Similarly, the separation of concerns and
the management of common control objectives are not considered.

A second interesting instance is the context-aware dynamic software product
line proposed by Parra, Blanc and Duchien (2009). They proposed the introduction
of context-aware assets that are dynamically incorporated into the product line,
depending on context changes. Although their architecture alludes to the existence
of feedback loop elements (i.e., a context manager (monitor), a decision maker
(analyzer and planner), a run-time platform (executor) and a knowledge base), control
loop properties and interactions are not completely addressed. However, despite the
monitor is implemented in their architecture as an independent context manager using
COSMOS (Abid, Chabridon, & Conan, 2009), the monitoring mechanism as a context
manager is not designed itself as a feedback look.

From the community of autonomic computing we consider the real-time adaptive
control approach for autonomic computing environments proposed by Solomon,
Ionescu, Litoiu and Mihaescu (2007). Their system aims to control the computing
infrastructure through a mathematical model of the variation of the number of users
per unit time. Based on this function, the system modifies the control structure of the
autonomic computing infrastructure by replacing its controller with one that matches
the model of users variation in time. Furthermore, their adaptive control is based on
a multi-layer architecture similar to ACRA, where the two upper layers correspond
to the autonomic system adaptation and the autonomic system layers respectively,
and the lowest layer corresponds to the managed infrastructure. The autonomic
system adaptation layer adapts the autonomic system layer whenever the management

47

Revista S&T, 9(18), 29-51. Cali: Universidad Icesi.

objectives are not achieved. Even though their approach separates the adaptation and
the autonomic management mechanisms into different layers, the concerns are not
separated within every layer.

For the implementation of self-organizing systems, Caprarescu and Petcu (2009)
proposed a decentralized autonomic manager composed of many independent
lightweight feedback loops implemented as agents, where each agent is an
implementation of a MAPE-K loop. Control objectives in this approach are specified as
policies. Moreover, each feedback loop agent uses just one policy that is shared among
all the agents organized in the same group. At the architectural level, this approach is
based on the three layers proposed by Kramer and Magee (2007). The system performs
its adaptation based on a process of three phases. The first one separates agents into
groups, by policy (i.e., self-organization phase); the second one ensures that only one
agent can execute changes at a specific time (i.e., management phase); and the third one
keeps the policies of the feedback loop up to date (i.e., policy update phase). Feedback
loops adapt the system by modifying their parameters, adding new components or
reconnecting components. However, although their approach makes the separation of
multiple feedback loops explicit, the elements of each loop are highly coupled.

Finally, it is worth noting that none of the analyzed approaches address the
preservation of context relevance. In our approach, this critical aspect is achieved by a
dynamic self-adaptive infrastructure of monitoring that is explicitly maintained by the
context adaptation controller feedback loop.

Control theory, as a discipline matured over the past century, has condensed in
its feedback loop reference model and corresponding variations the accumulated
knowledge and experience of control engineers designing and building automated
controllers for physical systems.

The main goal we address in this paper is to illustrate the application of a
feedback loop-based reference model to the engineering of self-adaptive software
systems. For this, we used a reference model we previously proposed for designing
self-adaptive software systems where feedback loops are explicit components of
the software architecture. Our reference model emphasizes the visibility of these
control elements through the separation of three fundamental concerns: (i) the
preservation of the system self-adaptive properties over time; (ii) the management
of the dynamic nature of context management for supporting the continued
relevance of the system with respect to its control objectives; and (iii) the dynamic
system adaptation as the mechanism to guarantee system properties under changing

Conclusions and Future Work

48 www.icesi.edu.co/sistemas_telematica

Villegas, N., Müller, H.A., & Tamura, G. (2011). On Designing Self-Adaptive Software Systems.

conditions of context. We illustrated how to apply this reference model to obtain the
architecture of an conference management system with ubiquitous characteristics.

Our reference model and its application process require of course additional
work to be widely usable. Some of the aspects that, in our opinion, are worth of
future work are: (i) the definition of a domain specific language (DSL) to enforce
the visibility of feedback loops, their elements and properties; (ii) the derivation
of domain-specific reference architectures for self-adaptation that enable software
engineers to design domain specific concrete architectures. These architectures
must address different issues such as controlling several control objectives and
ways of organizing multiple groups of feedback loops; (iii) the implementation
of a self-adaptive context management infrastructure or the improvement of an
existing one to support the dynamic nature of context information, as well as its
uncertainty and unsteadiness; (iv) the operational definition of control objectives as
contracts, to support the synchronized cooperation between context management
systems and self-adaptation mechanisms; and (v) the development of a governance
infrastructure to manage the feedback loop interactions.

References

Acknowledgments

Abid, Z., Chabridon, S., & Conan, D.
(2009). A framework for quality of
context management. In Quality of
context. First international workshop,
QuaCon 2009, Stuttgart, Germany, June
25-26, 2009. Revised Papers (LNCS
5786) (120-131). Berlín, Alemania:
Springer-Verlag. DOI: 10.1007/978-3-
642-04559-2

Bass, L., Clements, P., & Kazman, R. (2003).
Software architecture in practice (2nd ed.).
Boston, MA: Addison-Wesley.

Caprarescu, B.A, Petcu, D., (2009). A self-
organizing feedback loop for autonomic

computing. In Proceedings Computation
world 2009: Future computing, service
computation, cognitive, content, patterns
(pp.126-131). Los Alamitos, CA: IEEE
Computer Society

Cheng, B.H., Lemos, R., Giese, H., Inverardi,
P., Magee, J., Andersson, J.,...Whittle, J.
(2009). Software Engineering for self-
adaptive systems: A research roadmap.
In Software engineering for self-adaptive
systems (LNCS 5525) (pp. 1-26).
Berlín, Alemania: Springer-Verlag.
doi: 10.1007/978-3-642-02161-9

Chignell, M., Cordy, J., Ng, J., & Yesha, J.

This work was funded in part by the National Sciences and Engineering Research Council
(NSERC) of Canada (CRDPJ 320529-04 and CRDPJ 356154-07), IBM Corporation, CA
Inc., and Universidad Icesi (Cali, Colombia).

49

Revista S&T, 9(18), 29-51. Cali: Universidad Icesi.

(Eds.) (2010). The smart Internet. Current
research and future applications (LNCS
6400). Berlín, Alemania: Springer-
Verlag. DOI: 10.1007/978-3-642-
16599-3

Coutaz, J., Crowley, J.L., & Dobson, S.
(2005). Context is key. Communications
of the ACM (48)3, 49–53.

Frincu, M.E., Villegas, N.M., Petcu, D.,
Müller, H.A., & Rouvoy, R., (2011).
Self-healing distributed scheduling
platform. In Proceedings IEEE
international symposium on cluster, cloud
and grid computing, CCGrid 2011 (pp.
225-234). Los Alamitos, CA: IEEE
Computer Society

Garlan, D., Cheng, S-W., & Schmerl, B.
(2003). Increasing system dependability
through architecture-based self-repair.
In Architecting dependable systems (LNCS
2677) (pp. 61-89). Berlín, Alemania:
Springer-Verlag. doi: 10.1007/3-540-
45177-3

Giese, H., Brun, Y., Serugendo, J.D.M.,
Gacek, C., Kienle, H., Müller, H.,…
Shaw, M. (2009). Engineering self-
adaptive and self-managing systems.
In Applied algebra, algebraic algorithms
and error-correcting codes. 18th
International symposium, AAECC-18
2009, Tarragona, Spain, June 8-12, 2009.
Proceedings (LNCS 5527) (pp. 47-69).
Berlín, Alemania: Springer-Verlag.
doi: 10.1007/978-3-642-02181-7

Hebig, R., Giese, H., & Becker, B., (2010).
Making control loops explicit when
architecting self-adaptive systems. In
Proceedings 2nd international workshop

on self-organizing architectures (pp. 21–
28). New York, NY: ACM.

Hellerstein, J.L., Diao, Y., Parekh, S., &
Tilbury, D.M. (2004). Feedback control
of computing systems. Hoboken, NJ: John
Wiley & Sons.

Hellerstein, J.L., Singhal, S., & Wang, Q.,
(2009). Research challenges in control
engineering of computing systems.
IEEE Transactions on Network and
Service Management (6)4, 206.211.

IBM Corporation (2006). An architectural
blueprint for autonomic computing (4th
ed.) [Technical Report]. Hawthorne,
NY: Autor

Kephart, J.O., & Chess, D.M., (2003).
The vision of autonomic computing.
Computer (36)1, 41–50.

Kramer, J., & Magee, J. (2007). Self-managed
systems: an architectural challenge. In
Proceedings: 2007 workshop on the future
of software engineering (FOSE 2007)
(pp. 259-268). Los Alamitos, CA: IEEE
Computer Society

Müller, H., Pezzè, M., & Shaw, M., 2008.
Visibility of control in adaptive
systems. In Proceedings 2nd international
workshop on ultra-large-scale software-
intensive systems, ULSSIS 2008 (pp. 23-
26). New Yok, NY: ACM.

Müller, H.A., Kienle, H.M., & Stege, U.,
(2009). Autonomic computing: Now
you see it, now you don’t. Design
and evolution of autonomic software
systems. In Software engineering.
International summer schools, ISSSE
2006-2008, Salerno, Italy, Revised
tutorial lectures (LNCS 5413). (pp. 32-

50 www.icesi.edu.co/sistemas_telematica

Villegas, N., Müller, H.A., & Tamura, G. (2011). On Designing Self-Adaptive Software Systems.

54). Berlín, Alemania: Springer-Verlag.
doi: 10.1007/978-3-540-95888-8

Ogata, K. (2010). Modern control engineering
(5th ed.). Boston, MA: Prentice Hall.

Oreizy, P., Medvidovic, N., & Taylor, R.N.,
(2008.) Runtime software adaptation:
framework, approaches, and styles. In
Proceedings 30th international conference
on software engineering, ICSE 2008 (pp.
899-910). New Yok, NY: ACM.

Parra, C., Blanc, X., & Duchien, L. (2009).
Context awareness for dynamic service-
oriented product lines. In Proceedings
13th intentaional software product line
conference, SPLC 2009 (pp.131.140).
New York, NY: ACM.

Salehie, M., & Tahvildari, L. (2009).
Self-adaptive software: Landscape
and research challenges. ACM
Transactions on Autonomous and
Adaptive Systems (4)2, 14:1-14:42. doi:
10.1145/1516533.1516538

Solomon, B., Ionescu, D., Litoiu, M.,
& Mihaescu, M. (2007). A real-
time adaptive control of autonomic
computing environments. In
Proceedings 17th annual international
conference hosted by the Centre for advanced
studies research, IBM Canada Software
Laboratory, CASCON 2007 (pp. 124-
136). New York, NY: ACM

Tamura, G., Casallas, R., Cleve, A., &
Duchien, L. (2011a). QoS Contract-
aware reconfiguration of component
architectures using e-graphs. In 7th
International workshop on formal aspects
of component software, FACS 2010
(LNCS 6921) (pp. 34-52). Berlín,

Alemania: Springer-Verlag.

Tamura, G., Villegas, N.M., Müller, H.A.,
Duchien, L., & Casallas, R. (2011b). A
control-engineered reference model
to optimize context relevance in self-
adaptation. Recuperado de: https://
connex.csc.uvic.ca/access/content/
group/eac7abb3-27a0-4a53-be0f-
10525cabe46e/Papers/control-based-
reference-model-for-self-adapt.pdf

Truex, D.P., Baskerville, R., & Klein, H.
(1999). Growing systems in emergent
organizations. Communications of the
ACM (42)8, 117–123.

Villegas, N.M., & Müller, H.A. (2010).
Managing dynamic context to optimize
smart interactions and services. In The
smart Internet: Current research and future
applications (LNCS 6400) (pp. 289-318).
Berlín, Alemania: Springer-Verlag.

Villegas, N.M., Müller, H.A., Muñoz,
J.C., Lau, A., Ng, J., & Brealey, C.
(2011a [in press]). A dynamic context
management infrastructure for
supporting user-driven web integration
in the personal web. In Proceedings the
2011 conference of the Center for advanced
studies on collaborative research, Canada
(CASCON 2010) (pp. 1-15). New York,
NY: ACM.

Villegas, N.M., Müller, H.A., Tamura, G.,
Duchien, L., & Casallas, R. (2011b).
A framework for evaluating quality-
driven self-adaptive software systems.
In Proceeding 6th international symposium
on Software engineering for adaptive and
self-managing systems (pp. 80–89). New
York, NY: ACM.

51

Revista S&T, 9(18), 29-51. Cali: Universidad Icesi.

Norha M. Villegas
Ph.D. Candidate under the supervision of Dr. Hausi A. Müller, Department of Computer
Science, University of Victoria, Canada. She is a CAS student at the Center for Advanced

Studies at the IBM Toronto Laboratory (2010-2011). Her dissertation focuses on the
application of dynamic context management to the optimization of self-adaptive software

systems. Her research interests include control theory, autonomic computing, dynamic
context management, context-awareness, semantic web, and service-oriented systems. Norha

Villegas received a Diploma Degree in Systems Engineering and a Graduate Degree in
Organizational Informatics Management in 2002 and 2004, from Universidad Icesi, Cali,

Colombia

Hausi Müller, Ph.D.
Professor, Department of Computer Science and Associate Dean of Research, Faculty of
Engineering at University of Victoria, Canada. He is a Visiting Scientist at the Center for

Advanced Studies at the IBM Toronto Laboratory (CAS), CA Canada Inc., and the Carnegie
Mellon Software Engineering Institute (SEI). Dr. Müller ‘s research interests include

software engineering, self-adaptive and self-managing systems, context-aware systems,
and service-oriented systems. He serves on the Editorial Board of Software Maintenance

and Evolution and Software Process: Improvement and Practice (JSME). He served on the
Editorial Board of IEEE Transactions on Software Engineering (TSE) 1994-2000, 2005-
2009). He is Chair of the IEEE Technical Council on Software Engineering (TCSE). Dr.

Müller received a Diploma Degree in Electrical Engineering in 1979 from the Swiss Federal
Institute of Technology (ETH), Zürich, Switzerland and MSc and PhD degrees in Computer

Science in 1984 and 1986 from Rice University in Houston, Texas, USA.

Gabriel Tamura, M.Sc.
PhD student in co-supervision between University of Los Andes, Bogotá, Colombia, and

University of Lille 1, Lille, France, and a member of the INRIA-USTL-CNRS team-project
ADAM (Adaptive Distributed Applications and Middleware) and the Software Construction

Research Group. Gabriel Tamura obtained his M.Sc. degree in Systems and Computing
Engineering from Universidad de Los Andes, Bogotá, Colombia, in 1996, and his professional

degree in Computing Engineering from Universidad Javeriana, Cali, Colombia. His current
research interests include the engineering of context-aware self-adaptive software systems

and the evolution of component-based and service-oriented computing.

Currículum vitae

