
Abstract
Self-adaptive systems modify themselves at run-time in 
order to control the satisfaction of  their requirements 
under changing environmental conditions. Over the past 
century, feedback-loops have been used as important models 
for controlling dynamic behavior of  mechanical, electrical, 
fluid and chemical systems in the corresponding fields of  
engineering. More recently, they also have been adopted 
for engineering self-adaptive software systems. However, 
obtaining sound and explicit mappings consistently between 
adaptive software architectures and feedback loop elements 
is still an open challenge. This paper, recalling a reference 
model proposed previously with that goal, discuss key aspects 
on the design of  adaptive software where feedback loop 
elements are explicitly defined as first-class components in 
its software architecture. It complements this discussion with 
an illustration of  the process to use this reference model by 
applying it to a plausible adaptive software example. This 
paper aims at providing a reference starting point to support 
software engineers in the process of  designing self-adaptive 
software systems.

Resumen
Ante condiciones cambiantes del entorno, los sistemas 
autoadaptativos pueden modificarse a sí mismos para controlar 
la satisfacción de sus requerimientos en tiempo de ejecución. 
Durante el siglo pasado los sistemas de retroalimentación 
fueron importantes modelos para controlar el comportamiento 
dinámico de sistemas mecánicos, eléctricos, de fluidos y 
químicos, en sus respectivos campos de la ingeniería. Más 
recientemente fueron adoptados para diseñar software 
autoadaptativo. No obstante, lograr mapeos coherentes 
y explícitos consistentemente entre las arquitecturas 
de software adaptativo y los elementos de sistemas de 
retroalimentación es aún un reto abierto. Este artículo, sobre 
un modelo de referencia propuesto con ese propósito, discute 
aspectos clave del diseño de software autoadaptativo, en que 
los elementos de sistemas de retroalimentación se definen 
explícitamente como componentes de primer nivel en su 
arquitectura. Adicionalmente, ilustra la aplicación de este 
modelo de referencia a un ejemplo real de software adaptativo. 
El artículo ofrece a los ingenieros de software un punto de 
referencia para iniciar el diseño de software autoadaptativo.
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I. Introduction
Traditional software engineering has been based on an incorrect set of  goals, where 
software systems are expected to support rigid and stable business structures, 
have low maintenance, and ensure complete user acceptance. Truex, Baskerville, & 
Klein (1999) criticized this user-satisfaction emphasis and questioned the economic 
advantages of  lengthy analysis in the engineering of  software systems. In light 
of  this, they identified the necessity of  new software engineering models based on 
permanent analysis, dynamic requirements negotiation, and incomplete requirements 
specification. In this setting, a new kind of  software systems is emerging, whose 
development can be seen as a continuum of  short term adaptations and long term 
evolution (Cheng et al., 2009; de Lemos, Giese, Müller, & Shaw, 2011; Oreizy, 
Medvidovic, & Taylor, 2008). As part of  this continuous adaptation and evolution, 
system analysis is performed continuously, and in parallel with system operation 
and maintenance. Furthermore, system requirements satisfaction is regulated and 
controlled by continuously adjusting or enhancing system behavior (Giese et al., 
2009).

Such dynamic systems adapt in response to changes in their environments, 
either to ensure the continuous satisfaction of  their functional and non-functional 
requirements, or to provide ubiquitous and context-dependent smart services. In any 
case, this adaptation must be performed while preserving the contracted quality of  
service (QoS) conditions and desired adaptation properties (Villegas, Müller, Tamura, 
Duchien, & Casallas, 2011). These quality conditions are usually represented in the 
form of  service level agreements (SLA), and their enforcement mechanisms are 
based on contracts and policies (Tamura, Casallas, Cleve, & Duchien, 2011).

Over the past century, the feedback-loop model from control theory has been used 
extensively in many diverse fields and application domains of  engineering, with 
substantial advances and results, for instance automating the control of  industrial 
processes (Ogata, 2010). In the first decade of  the new century, IBM researchers 
proposed the notion of  an autonomic element as a building block for self-managing 
systems, in the form of  a monitoring-analysis-planning-execution and shared 
knowledge (MAPE-K) loop that controls a managed computing element (IBM, 2006; 
Kephart & Chess, 2003). Many researchers have recently proposed similar software 
architecture constructs and applied these concepts to engineer self-adaptive, self-
organizing and self-managing software systems (Salehie & Tahvildari, 2009). 
Nonetheless and despite the acknowledgment on the importance of  the feedback-
loop, its visibility as the crucial architectural element to drive adaptation in software 
systems remains often hidden. This is in part due to the software flexibility, which 
in general does not enforce separation of  concerns between adaptation mechanisms 
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and managed (controlled) software systems. Thus, it is common that software 
architectures highlight abstractions related to the functional requirements of  the 
system, having feedback-loop elements blurred in them. In this setting, making 
and maintaining visible the feedback-loop elements and the feedback-loop itself  in 
self-adaptive software architectures remains an open challenge (Giese et al., 2009; 
Hellerstein, Diao, Parekh, & Tilbury, 2004; Müller, Kienle, & Stege, 2009).

In this paper we illustrate how to design an adaptive software system where the 
feedback loop drives its architecture, and moreover, where feedback loop components 
are explicit in this architecture. This illustration is based on the reference model 
for the engineering of  self-adaptive software systems proposed in a previous work 
(Tamura, Villegas, Müller, Duchien, & Casallas, 2011). This illustration aims at 
providing software engineers with a starting point for the engineering of  self-
adaptive software systems (Frincu, Villegas, Petcu, Müller, & Rouvoy, 2001). Our 
reference model allows the design of  software architectures where the different 
feedback loops required to guarantee system properties through adaptation are 
directly implementable, by making explicit: (i) the management of  self-adaptive 
properties as the control reference goals; (ii) the separation of  control concerns by 
decoupling the different feedback-loops required to achieve the reference goals over 
time; and (iii) the specification of  context management as an independent control 
function to monitor and preserve the contextual relevance, taking into account 
internal and external context changes.

The remainder of  this paper is organized as follows. Section 2 reviews the classical 
theory of  control systems and the feedback loop’s structural and behavioural 
elements. It also describes the illustrative example used throughout the paper. 
Section 3 introduces the application of  feedback loops to the engineering of  self-
adaptive systems. Sections 4 and 5 present, respectively, an overview of  our proposed 
reference model and its application to the illustrative example. Section 6 discusses 
similar works on the application of  feedback loops to the engineering of  self-* 
systems. Finally, Section 7 concludes the paper and outlines directions for future 
work

II. Control Theory
In control theory, the feedback loop —or closed loop— is the cornerstone structure 
for building controllers for different kinds of  dynamic systems, such as mechanical, 
electrical, fluid and chemical. Moreover, they provide the basis for automated control 
in diverse fields of  engineering, and for self-adaptation in computing and software 
engineering (Müller, Pezzè, & Shaw, 2008). The feedback loop structure, as depicted 
in the so-called block diagram of  Figure 1, performs dynamic control by comparing 
measured outputs of  the target system behaviour to the control objective given as 
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reference input, yielding the control error, and then adjusting the controlling signals 
accordingly for the target system to behave closer to this reference input (Ogata, 2010). 
The measured output can also be affected by external disturbances or even by the noise 
caused by the system adaptation. Transducers adapt the signals measured by sensors, 
as required by the comparison element.

In order to keep objectives controlled in a target system, several strategies have been 
proposed. The three most common strategies are (i) the regulatory control, which ensures that 
the measured output is as close as possible to the reference input; (ii) the disturbance rejection, 
whose main goal is to control the effects of  disturbances on the measured output; and (iii) 
the optimization, which permanently seeks to obtain the best value of  the measured output, 
as effectively as possible. These strategies constitute minor variations on the controller 
element, as they are realizable with no structural changes in the block diagram.

For instance, Figure 2 represents a typical time-response behaviour shape for a 
temperature control system with a regulatory control strategy. The target system 
behaviour is shown in terms of  the signals to be controlled (e.g., the X-axis represents 
the time dimension and the Y-axis the measured water temperature in Celsius degrees). 
The system starts in a normal state, that is, stabilized around 26.67 at minute 33 of  
the industrial process to be controlled. Around minute 35.5, the system is affected by 
a disturbance input heating up the temperature (e.g., hot water is added or cool water 
is drained), and a new reference input is set to 26.92. With this disturbing event, the 
difference between the measured output and the new reference input is used by the 
feedback loop controller to drive the system adaptation into these new conditions, by 
continuously computing suitable control input signals and feeding them back to the 
system until it re-gains a normal, stable state, around minute 45. Transducer elements 
might be necessary when, for instance, the measured units of  the control reference 
input and the measured system output are different.

Figure 1. Classical block diagram of  a single-input, single output (SISO) feedback 
control system (Hellerstein, Diao, Parekh, & Tilbury, 2004) 
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Figure 2. Typical time response for temperature control using a proportional, integral, 
derivative (PID) controller which is the workhorse of  industrial control engineering  

To compute the controlling signals, there are several possible mechanisms. In control 
theory, the representative mechanism is the system transfer function, a mathematical 
model built on the structure of  the feedback loop block diagram. Depending on the 
behavioural characteristics of  the system to be controlled, a system transfer function 
is built with proportional, derivative and integral (PID) terms. The parameters in a 
PID controller have special significance; there are many sophisticated methods for 
tuning the constants in this kind of  controller.

Although the application of  the theory of  controlling industrial processes is well 
understood, its application to controlling software systems has at least two significant 
challenges: first, its main adaptation mechanism is modeled on continuous mathematics, 
and second, it relies on measures taken from and actions performed into physical, self-
performing artifacts (e.g., sensors, gauges and valves/actuators for temperature, or 
pressure). As these physical variables are in the continuous-time domain, the use of  
continuous mathematics in this theory fits perfectly. In contrast, software systems are 
composed of  intangible artifacts with discrete-time behaviour. Thus, direct sensing 
must be performed also by CPU-dependent software artifacts, and the adaptation 
mechanisms must reason on their discrete-time output. Moreover, to fully exploit the 
possibilities of  software adaptation, the output of  the adaptation mechanism must 
be more structured than controlling signals to be transduced by electro-mechanical 
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devices. This output may take the form, for example, of  a plan of  ordered actions to be 
instrumented by software actuators on the target software components. Fortunately, 
there is the theory of  linear discrete-time systems, which closely resembles the theory 
of  linear continuous-time systems. Nonetheless, achieving in the software domain 
the maturity level reached by control theory in modeling the behaviour of  physical 
systems is one of  the most challenging problems of  self-adaptive software (Hellerstein, 
Singhal, & Wang, 2009).

To illustrate the elements of  our reference model and its application throughout the 
paper, we next introduce a hypothetical, yet plausible, context-based adaptive system 
example. In this example we analyze and map the control theory concepts to dynamic 
software adaptation concepts.

A. An illustrative example
The example we use to discuss the elements of  our approach is a smart system for 

managing hotels or congress centers to host conferences or group meetings. In this 
case, suppose a conference is held at the Colombian Conference Center, from Sep. 27 to 
Oct. 1, 2011 in Cartagena. The conference center is supposed to provide a ubiquitous 
system to assist with the logistics of  the conference and the guest’s activities during 
the event. Conferences are registered in the system as soon as their contract is agreed. 
The registration involves the configuration of  important conference information 
such as start date, duration, agenda, language, community profile, or Internet access 
requirements. The contract agreement includes conditions related to the system 
properties, such as performance on rush hours, for supporting the conference activities. 
In this hypothetical example, the conference organizers anticipate a large turnout. As 
a result, in order to ensure a comfortable registration process for its delegates, they 
require guarantees for maximum processing time per registration request. The conference 
organizers accept and subscribe to the service provider offering a service level 
agreement that guarantees a maximum processing time of  three seconds per request 
from 8:00 am to 10:00 pm, and six seconds from 10:01 pm to 7:59 am, for the two days 
at the beginning of  the conference.

III. Feedback Loops and Adaptive Software Systems
Self-adaptive software systems are systems able to adapt their behaviour or 
structure at run-time (Oreizy et al., 2008; Salehie & Tahvildari, 2009). Self-
managing systems are instances of  self-adaptive software systems that adapt 
themselves according to administration goals (Kephart & Chess, 2003). Context-
aware, ubiquitous and user-centric applications are examples of  self-adaptive 
systems where the system behaviour is tailored according to users locations and 
preferences (Coutaz, Crowley, & Dobson, 2005; Chignell, Cordy, Ng, & Yesha, 
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2010; Villegas et al., 2011a). To realize continuous adaptation and evolution, 
system analysis is performed continuously and in parallel with system operation 
and maintenance, and system requirements satisfaction is regulated and 
controlled by continuously adjusting or enhancing system behaviour according 
to environmental conditions. Self-adaptation can be static or dynamic. In static 
self-adaptation, adaptation mechanisms are explicitly defined by the designers for 
the system to choose from, during execution; whereas, in dynamic self-adaptation, 
adaptation plans and monitoring requirements must be produced and selected by 
the system at run-time (Müller et al., 2009).

As mentioned, in the first decade of  the new century, IBM researchers proposed 
the notion of  an autonomic element as a building block for self-managing systems in 
the form of  a monitoring-planning-execution and shared knowledge (MAPE-K) loop 
(cf. Figure 3). This loop is the basic block to support self-adaptation in controlling a 
managed computing element (IBM, 2006; Kephart & Chess, 2003). In the first phase 
of  the MAPE loop —monitoring, monitors gather and process context information 
from the environment that is relevant to the adaption process. This monitored 
information is sent then to the second phase, analysis, where analyzers correlate 
context information to infer symptoms about the execution environment and the 

Figure 3. The MAPE-K loop (IBM, 2006; Kephart & Chess, 2003) 
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system behaviour. In the third phase, planning, planners use analyzed symptoms 
to define adaptation plans accordingly. In the last phase of  the loop —execution, 
executors implement and execute plans to adapt the actual system and obtain the 
desired behaviour. The monitoring phase continuously feeds the adaptation loop 
back, restarting the cycle. A knowledge base supports the information flow required 
throughout the whole cycle.

The necessity of  making explicit feedback-loop elements in the engineering of  
self-adaptive software systems has been identified by several recent investigations in 
the software engineering community (Cheng et al., 2009; Giese et al., 2009; Müller 
et al., 2008). On one hand, Müller et al. (2008) analyze the benefits of  specifying 
the feedback loops and their major components explicitly and independently, as 
well as the necessity of  defining explicitly the interactions among feedback loops 
and among their elements, from analysis and design to implementation. Giese et al. 
(2009) also argue on the benefits of  decoupling feedback loops in control-based 
reference architectures to address the satisfaction of  quality attributes (control 
objectives), the management of  the context complexity and the interactions among 
multiple feedback loops and their elements. Cheng et al. (2009) also emphasize the 
importance of  making explicit not only the feedback loops but also their elements 
and properties. On the other hand, the behaviour of  the adaptive system and its 
components is highly dependent on the changing context information that defines 
the execution environment. Thus, improving context-awareness in self-adaptation 
by understanding, managing, and controlling context information via run-time 
monitoring has been identified as a promising research direction toward the 
engineering of  reliable and efficient adaptive software systems (Lemos et al., 2011; 
Villegas & Müller, 2010).

Self-adaptation in software systems can take different forms (Villegas et al., 2001b). 
Nevertheless, feedback loops, although generally defined implicitly, are at the core 
of  self-adaptive software systems as they adapt their behaviour to keep objectives 
controlled based on either regulatory control, disturbance rejection or optimization 
requirements (Müller et al., 2009b). For this, feedback loops provide instrumentation 
to sense the execution environment, model the system behaviour in that environment, 
and execute actions to change the environment or the system behaviour. Moreover, 
as depicted in Figure 4, the architectural components of  the MAPE-K loop can 
be mapped to the elements of  the feedback loop studied in control theory, but 
for controlling dynamic adaptation in a software system (Hebig, Giese, & Becker, 
2010; Müller et al., 2008; Tamura et al., 2011b) The elements in Figure 4 clearly 
resemble the ones of  the MAPE-K loop, but with their roles and interrelationships 
made explicit. This mapping constitutes the foundational structural and behavioural 
aspects for our reference model (Tamura et al., 2011b).
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Figure 4. SISO feedback control block diagram with explicit functional elements and 
corresponding interactions to control dynamic adaptation in a software system. 

IV. The Reference Model for Self-Adaptive Software 
Systems

Figure 5 illustrates the reference model for designing self-adaptive software systems 
presented in Tamura et al. (2011b). An adaptive system can be defined as a set of  
cooperating feedback loops that ensure the achievement of  the system objectives. Thus, 
according to our reference model, a self-adaptive system is designed as a collection 
of  cooperating control objective managers, adaptation control loops, and context 
manager control loops to control the adaptation process.

Our reference model can be combined with other reference models for adaptive 
systems. In particular, the IBM architectural blueprint provides the ACRA model to 
orchestrate control loops hierarchically for autonomic systems (IBM, 2006; Kephart 
& Chess, 2003). Similarly, our reference model can be organized hierarchically to 
orchestrate control and include manageability endpoints to facilitate communication 
between levels. Furthermore, the distribution of  the feedback loops and their elements 
themselves in different machines should be possible. Shared knowledge bases, as the 
ones proposed for the MAPE-K loop, also facilitate interactions among control loops. 
Such knowledge bases could store historical information such as symptoms, as well as 
internal and external context facts required for the analyzers in each type of  control 
loop. Moreover, these persistence mechanisms help maintain contracts and policies to 
achieve the control objectives. Finally, contracts enable the controllers to reason about 
goals and agreements to determine the control actions.

The following subsections summarize selected design drivers for the application of  
our reference model.

A. Separation of Concerns
Analyzing our reference model (cf. Figure 4) from a combined control theory and 

software architecture point of  view, for a software system (target system) to become self-
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Figure 5. Reference model for context-based self-adaptive systems (Tamura et al., 
2011b). The context manager feedback loop supports the adaptation for a system to 
keep fulfilling its control objectives in a dynamic environment. Signals (A), (B), (C) and 
(D) highlight the interactions among the feedback loops.

adaptive, it should incorporate at least three subsystems with it: (i) a control objectives 
manager; (ii) a context manager (monitoring mechanism); and (iii) an adaptation mechanism. 
This design separates the concerns with respect to (a) the final purpose and properties 
of  the target system (control objectives manager); (b) the continued fulfillment of  the 
system purpose, and the preservation of  its properties under changing conditions of  
execution (system adaptation controller or adaptation mechanism); and (c) the system 
relevance according to whatever it must take into account from a new environment, 
after a change of  execution conditions (responsibility of  the context manager).
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 Applying the reference model to the illustrative scenario outlined in Section II.A, 
we clearly identify three types of  adaptation, depending on the different emphasis of  
feedback loop interactions: preventive, corrective and predictive. In preventive adaptation, 
the context monitor notifies the adaptation analyzer about context events (context 
symptoms) that are causing no effects in the target system behaviour yet, but eventually 
will. For instance reaching the previous day of  a registered conference beginning date 
(a calendar event); that is, even though the adaptation subsystem has encountered 
no disturbances yet in the target system, based on this context information it could 
minimize the risks of  goal disruption by performing a system adaptation (e.g., to 
manage a significantly higher than normal number of  registration requests per time 
unit). Corrective adaptation takes place when the adaptation controller detects that 
the target system is not fulfilling its control objectives (e.g., QoS agreements) by 
measuring the target system behaviour. This can occur if, even in the example of  
preventive adaptation, the number of  requests per time unit is reaching the limits 
of  the new capacity after performing the adaptation. This situation requires for the 
adaptation controller to perform an additional reconfiguration or to apply restrictive 
usage mechanisms to prevent the system from collapsing before a new adaptation is 
performed. Predictive adaptation takes advantage of  both, historical information to 
anticipate risks of  goal fulfillment disruption, as well as symptoms that evidence the 
necessity of  adaptation. These symptoms might be presented in the form of  patterns of  
correlated events that eventually become significant evidence to advice for adaptation. 
An example of  this latter case is the detection of  a low but frequent degradation in 
the system performance near a conference start date, independently of  the fact that 
this date had been previously registered in the system. This continued degradation 
may be caused by early registration of  several groups of  conference assistants, that 
nonetheless is non-sensible enough for the adaptation subsystem to react.

Finally, despite this separation of  concerns, the target system together with the 
control objectives manager, the context manager and the adaptation mechanism, also 
constitute a general feedback loop.

B. Management of Control Objectives as a Feedback Loop
The system purpose and corresponding properties are objectives whose permanent 

fulfillment must be controlled through the collaboration of  the adaptive and context 
feedback loops. However, control objectives are also subject to change by user-level 
negotiations at run-time. Therefore, they must be managed in a consistent and 
synchronized way by the adaptation mechanism and the context manager.

There may be several causes for these changes. In a first case, there may be service 
level agreements that, even if  they have been pre-negotiated (or defined statically), they 
imply changes at run-time in the system objectives (reference inputs). For instance, this 
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may happen when a pre-negotiated contract defines that the system must guarantee 
a maximum of  six seconds per request from 8:00 am to 10:00 pm, but a maximum of  
12 seconds from 10:01 pm to 7:59 am, for the two days before the conference start. 
In this case, whenever the context manager detects a change of  time from 7:59 am 
to 8:00 am within these two days, it notifies the adaptation mechanism to reconfigure 
the target system architecture in such a way that the target system can support a 
maximum of  six seconds per request. This is a new reference input to be controlled 
by the adaptation mechanism, whose achievement must be enforced by reconfiguring 
the target system, analogous to the change in the set points in our initial example 
of  temperature control. However, the achievement of  the reference inputs over time 
may require a successive application of  several rounds of  planned actions for system 
reconfiguration and corresponding measurements, until the target system effectively 
achieves the required performance level.

In a second case, when the system is in execution, there may be a re-negotiation of  
conditions on previously negotiated SLAs. An instance of  this case would occur if  a new 
SLA is agreed requiring a maximum of  only one second per request, for the four hours 
before the conference opening. In either case, the system purpose and corresponding 
properties are managed explicitly as the control objectives for the adaptive system. 
Thus, ideally both, the system adaptation reference control input and the reference 
context input should be automatically derived from these control objectives and fed 
into the corresponding feedback loops (cf. interaction (A) in Figure 5). This automatic 
derivation ensures the consistency and synchronization between these two sets of  
reference inputs.

In our example, when the time changes from 7:59 am to 8:00 am, the control objectives 
monitor is notified of  this event. Then, the control objectives analyzer determines 
that the control objectives must change according to the agreed SLAs and the control 
objectives controller plan, and execute the replacement of  the in force SLA of  6 seconds 
per request by the SLA of  3 seconds per request. This change defines the quality attribute 
or new control objective (e.g., performance), and therefore the adaptation strategy (e.g., 
architecture reconfiguration rule for deploying additional scalable software components in 
spare hosts of  a grid computing infrastructure). The new SLA also determines the relevant 
context information that must be monitored from the environment (e.g., elapsed time 
between request start and stop time-stamps), and its corresponding context management 
requirements (e.g., context gathering strategies, sampling rates, measurement precision 
and resolution). Thus, from this new SLA, the control objectives manager derives the 
reference control inputs (quality attribute: request processing performance; set point: 6; units: 
seconds) and the corresponding reference context inputs (sensor infrastructure type: logical; 
sensor type: time; precision: tenths of  second; minimum resolution: one tenth of  second; 
monitoring sampling rate: every 30 seconds).
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Finally, the dynamic adaptation of  control reference inputs is addressed by closing 
the control objectives manager as another feedback loop, in which the monitor receives 
symptoms from the context analyzer (control error); the analyzer, planner and executor 
conform the control objectives manager; and the target system is represented by the 
triple: context manager, adaptation mechanism, and core controlled system.

C. Adaptation Control Feedback Loop
The adaptation control feedback loop mission is to serve as a guarantor for the 

continued fulfillment of  the target system purposes and corresponding properties 
preservation. We refer to purpose and properties as system variables to be controlled.

To accomplish this mission, the adaptation control feedback loop follows the separation 
of  concerns criteria described in previous sections. In turn, these criteria conform to 
the general principle of  control theory, which relies on quantitative expressions to 
measure the error in the controlled system variables, and a reference control input for 
each of  these variables. The adaptation control feedback loop continually gathers these 
measurements from the target system through its adaptation monitor. This monitor 
notifies control symptoms for adaptation to the adaptation analyzer, which determines 
the necessity of  performing a system adaptation. The simplest case for this occurs 
when the measured variables under control, compared to their corresponding reference 
control inputs, indicate that some control objective is not being fulfilled. Whenever it is 
relevant, the adaptation analyzer notifies this fact with its corresponding information 
to the system adaptation controller. With this information, the planner element selects 
a strategy to adapt the system with the goal of  reestablishing the fulfillment of  the 
violated control objective. The result of  this strategy is sent as an ordered list of  
system architecture reconfiguration actions, which are performed in the target system 
by the executor, thus closing the control loop.

D. Context Manager Feedback Loop
The feedback loop depicted in the bottom part of  Figure 5 represents the context 

manager as part of  the monitoring mechanism in our reference model. The reference 
context input corresponds to the reference context management objectives derived from 
the system control objectives. These reference inputs form the basis for the generation 
of  context models that represent environmental information useful for supporting 
the adaptation process. In our application example, context models represent 
context information types as well as different levels of  granularity, constraints, and 
relations among context entities, and spatial and scope information that must be 
managed for guaranteeing the objectives of  the ubiquitous conference system (e.g., 
sensor infrastructure type: logical; sensor type: time; precision: tenths of  a second; 
monitoring sampling rate: every 30 seconds). The context monitor refers to the gathering 
of  primary context information from the internal and the external environment 
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and the correlation of  this information to infer either, context symptoms that can 
affect the target system adaptation process, including the adaptation of  the control 
objectives, or control symptoms to decide about the context manager adaptation. This 
information is preprocessed by the context transducer to generate numeric values from 
physical and logical sensors, and determine comparable measures by performing basic 
transformations. Furthermore, the context analyzer performs the context handling 
process required for the context adaptation controller to decide about adapting the 
context manager, and for the control objectives manager to decide about changing the 
system objectives, as demanded by the adaptive system and its environment. Changes in 
control objectives can be performed fully or semi-automatically, depending on whether 
or not it is necessary to re-negotiate and, consequently, for the user to intervene (cf. 
Section 4.2). The context adaptation controller is in charge of  defining and executing the 
adaptation plan for the context manager, according to its adaptation strategy. Finally, 
the measured control output and the adaptive system internal context are used to 
achieve the context manager goal: to support the system adaptation process and the 
management of  the system control objectives.

E. Feedback Loop Interactions
The decoupling proposed by our model not only supports the separation of  the 

corresponding feedback control loops, but also the separation of  the elements within 
each feedback loop. Even though control loops are designed independently of  each 
other, they must operate together to achieve the overall system objectives.

As depicted in Figure 5, in order to ensure the achievement of  the control objectives, 
our reference model specifies four interactions among its feedback loops, labeled (A), 
(B), (C) and (D). We classify interactions (A) and (B) as indirect interactions because 
they are realized through the control objectives manager, and interactions (C) and (D) 
as direct interactions due to their direct connections between the context manager 
loop and the adaptation loop.

Interaction (A) provides the reference context input (i.e., context manager objectives) 
for the context manager loop to gauge the relevance of  context information; decide how 
to manage and provision that environmental information; and provide the reference 
control input (i.e., adaptation objectives) for the adaptation controller to manage the 
adaptation process for achieve the system objectives.

Interaction (B) enables the control objectives manager to decide about changes in 
the control objectives, whenever the context manager detects that given the current 
context, the current set of  control objectives should be dynamically adjusted or re-
negotiated.

Interaction (C) is realized through context symptoms that are identified and sent 
from the context monitor to the adaptation analyzer. These context symptoms can 
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be in the form of  events useful for decision making in the adaptation control loop. 
The communication mechanism and the information associated with these symptoms 
depend on the supported adaptation type (i.e., preventive, corrective or predictive).

Interaction (D) represents the internal context sensed by the context manager from 
the adaptive system. Monitoring internal context information is necessary to assess 
the consistency of  the system after an adaptation. By analyzing internal context 
information that characterizes the current state of  system properties, the context 
manager must be able to infer symptoms about the achievement of  system goals.

V. Applying the Reference Model
According to Bass, Clements and Kazman (2003), the process of  designing a concrete 
software architecture for a system should start either from a reference model or 
from an architectural style, or from both. In either case, the process continues with 
successive refinement steps, where each step augments the previous with additional 
information from further analysis of  requirements in the problem domain as well as 
design decisions.

To obtain a concrete self-adaptive software architecture for the conference system of  
our hypothetical example, we follow this step-wise refinement process, starting from 
our reference model. An intermediate refinement step is obtained by mapping and 
incorporating the reference model elements into the conference system components. 
Figure 6 illustrates this refinement step by using contracts as system control objectives, 
and SLAs as reference control inputs. We also assume that in this case the context 
manager is not required to be self-adaptive. 

Through further refinement, we obtain a concrete software architecture for our 
conference management system, the UML deployment diagram depicted in Figure 7.

To illustrate the system behaviour, assume that the system has been configured to 
accept registration requests just for two days before the conference start day. Thus, for 
this conference, the mission of  ControlObjectivesManager is to preserve four performance 
SLAs: (i, ii) three seconds per request from 8:00 am to 9:59 pm and (iii, iv) six seconds 
from 10:00 pm to 7:59 am on Sep. 25/26.

ControlObjectivesManager, once notified through its contextSymptoms port of  the 8:00 
am beginning-of-conference-registration time-event on Sep. 25 by the ContextMonitor 
component, sets the SLA of  three seconds per request and the corresponding 
SLAContextRequirements reference control inputs for the adaptation and context 
monitors, AdaptMonitor and ContextMonitor respectively. Periodically, these two 
concurrent components monitor the collected system measurements from the 
ManagedConferenceSystem’s sensorSystPolling port. However, both components monitor 
the target system at different rates.
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Figure 6. The reference model elements mapped into the conference management 
system components. Note that the context manager is not self-adaptive. 

AdaptMonitor signals corrective adaptation symptoms to the AdaptAnalyzer based on 
comparisons between the system measurements and reference control inputs, either in a 
stabilized and normal system state, or immediately after a system adaptation, during the 
stabilization phase. ContextMonitor provides the AdaptAnalyzer with (i) predictive adaptation 
symptoms, based on the recognition of  behavioural adaptation; or with (ii) preventive 
adaptation symptoms, based on context events gathered by the ContextGathering components.

Whenever AdaptAnalyzer determines that a system adaptation is required, it provides 
the corresponding context information to the AdaptController component. With this 
information, AdaptController requests a system architecture reconfiguration plan from the 
ArchReconfRuleSystem, and then sends the reconfiguration actions to ReflectionInfrastructure 
for execution. To achieve better SLA performance over time, one plausible architecture 
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Figure 7. Simplified software architecture for the conference management system 
derived from our reference model. The visibility of  the feedback control loops is clearly 
maintained and mappable to the detailed design documents and the source code 
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reconfiguration rule would re-deploy the ConferenceRegistProcessor component of  
Figure 7 and deploy additional ConferenceRegistProcessor components, each one on new 
additional hosts, then reconnecting the corresponding components. 

Finally, the ConferenceRegistration component receives registration requests from 
WebBrowser clients. The ConferenceRegistration component redirects them to the 
different ConferenceRegistProcessor components for processing.

VI. Related Work
This section presents evidence of  the application of  feedback loops to concrete 
implementations of  adaptive software systems. However, as concrete implementations, 
they are not necessarily examples of  reference models. On the contrary, these cases 
evidence the necessity of  providing reference models with explicit application 
guidelines, such as the one we illustrate in this paper.

A first example of  concrete implementations is the self-healing system developed 
by Garlan, Cheng and Schmerl (2003). Their system architecture maps directly to the 
feedback control architecture proposed by Müller et al. (2008), even though not all of  
the control loop elements are made explicit. Similarly, the separation of  concerns and 
the management of  common control objectives are not considered.

A second interesting instance is the context-aware dynamic software product 
line proposed by Parra, Blanc and Duchien (2009). They proposed the introduction 
of  context-aware assets that are dynamically incorporated into the product line, 
depending on context changes. Although their architecture alludes to the existence 
of  feedback loop elements (i.e., a context manager (monitor), a decision maker 
(analyzer and planner), a run-time platform (executor) and a knowledge base), control 
loop properties and interactions are not completely addressed. However, despite the 
monitor is implemented in their architecture as an independent context manager using 
COSMOS (Abid, Chabridon, & Conan, 2009), the monitoring mechanism as a context 
manager is not designed itself  as a feedback look.

From the community of  autonomic computing we consider the real-time adaptive 
control approach for autonomic computing environments proposed by Solomon, 
Ionescu, Litoiu and Mihaescu (2007). Their system aims to control the computing 
infrastructure through a mathematical model of  the variation of  the number of  users 
per unit time. Based on this function, the system modifies the control structure of  the 
autonomic computing infrastructure by replacing its controller with one that matches 
the model of  users variation in time. Furthermore, their adaptive control is based on 
a multi-layer architecture similar to ACRA, where the two upper layers correspond 
to the autonomic system adaptation and the autonomic system layers respectively, 
and the lowest layer corresponds to the managed infrastructure. The autonomic 
system adaptation layer adapts the autonomic system layer whenever the management 
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objectives are not achieved. Even though their approach separates the adaptation and 
the autonomic management mechanisms into different layers, the concerns are not 
separated within every layer. 

For the implementation of  self-organizing systems, Caprarescu and Petcu (2009) 
proposed a decentralized autonomic manager composed of  many independent 
lightweight feedback loops implemented as agents, where each agent is an 
implementation of  a MAPE-K loop. Control objectives in this approach are specified as 
policies. Moreover, each feedback loop agent uses just one policy that is shared among 
all the agents organized in the same group. At the architectural level, this approach is 
based on the three layers proposed by Kramer and Magee (2007). The system performs 
its adaptation based on a process of  three phases. The first one separates agents into 
groups, by policy (i.e., self-organization phase); the second one ensures that only one 
agent can execute changes at a specific time (i.e., management phase); and the third one 
keeps the policies of  the feedback loop up to date (i.e., policy update phase). Feedback 
loops adapt the system by modifying their parameters, adding new components or 
reconnecting components. However, although their approach makes the separation of  
multiple feedback loops explicit, the elements of  each loop are highly coupled.

Finally, it is worth noting that none of  the analyzed approaches address the 
preservation of  context relevance. In our approach, this critical aspect is achieved by a 
dynamic self-adaptive infrastructure of  monitoring that is explicitly maintained by the 
context adaptation controller feedback loop.

Control theory, as a discipline matured over the past century, has condensed in 
its feedback loop reference model and corresponding variations the accumulated 
knowledge and experience of  control engineers designing and building automated 
controllers for physical systems.

The main goal we address in this paper is to illustrate the application of  a 
feedback loop-based reference model to the engineering of  self-adaptive software 
systems. For this, we used a reference model we previously proposed for designing 
self-adaptive software systems where feedback loops are explicit components of  
the software architecture. Our reference model emphasizes the visibility of  these 
control elements through the separation of  three fundamental concerns: (i) the 
preservation of  the system self-adaptive properties over time; (ii) the management 
of  the dynamic nature of  context management for supporting the continued 
relevance of  the system with respect to its control objectives; and (iii) the dynamic 
system adaptation as the mechanism to guarantee system properties under changing 

Conclusions and Future Work
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conditions of  context. We illustrated how to apply this reference model to obtain the 
architecture of  an conference management system with ubiquitous characteristics.

Our reference model and its application process require of  course additional 
work to be widely usable. Some of  the aspects that, in our opinion, are worth of  
future work are: (i) the definition of  a domain specific language (DSL) to enforce 
the visibility of  feedback loops, their elements and properties; (ii) the derivation 
of  domain-specific reference architectures for self-adaptation that enable software 
engineers to design domain specific concrete architectures. These architectures 
must address different issues such as controlling several control objectives and 
ways of  organizing multiple groups of  feedback loops; (iii) the implementation 
of  a self-adaptive context management infrastructure or the improvement of  an 
existing one to support the dynamic nature of  context information, as well as its 
uncertainty and unsteadiness; (iv) the operational definition of  control objectives as 
contracts, to support the synchronized cooperation between context management 
systems and self-adaptation mechanisms; and (v) the development of  a governance 
infrastructure to manage the feedback loop interactions.
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