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Abstract—This paper presents a flexible deployment service
for cloud computing. The service facilitates the specification and
the execution of cloud deployment plans for applications. An
application is described through a pattern, an abstract view that
captures the logical view of the application and its mapping
into cloud resources. The services instantiate the pattern in the
cloud and allows for runtime updates of the deployment. The
service is accessible through a RESTful interface. We identify
the requirements for the service, describe its interfaces and show
several case studies that capture the main features of the service.

Index Terms—multi-cloud, system management, application
deployment

I. INTRODUCTION

The multi-cloud [1], [2], [3] is a challenging topic in
cloud computing research, and foundational concepts like
brokers [4], [5], meta-data services [6], elasticity [7], and
security [8] are being explored to facilitate its realization.
Underpinning the concept of a multi-cloud is the notion of
multiple domains (i.e., multiple cloud providers) in which
various clouds (e.g., Amazon EC2, Rackspace, private clouds,
...) are aggregated together to achieve better quality of service
or other desirable benefits.

One such model is being actively contemplated by a re-
search project in Canada. The Natural Sciences and Engineer-
ing Research Council of Canada (NSERC) Strategic Network
for Smart Applications on Virtual Infrastructure (SAVI) [9] is
a national research project involving academia and industry
that envisions a novel, hierarchical structure for future clouds
composed of two key cloud types: smart edges and core. An
edge represent a small cloud (in terms of numbers of machines
and lower power consumption) and exists in close proximity
to the end-user. An edge is connected by a fast pipe to the
core (a large cloud much like today’s public providers) and
acts to provide a high-bandwidth, low latency point of service
to users. This arrangement allows computation tasks to move
between the edge and the core depending on the availability of
resources, the characteristics of the application, and the needs
of the user. This two-tiered model is expected to encourage
the development of applications not currently possible with
existing infrastructure.

A key functional requirement of SAVI is the ability to de-
ploy future applications to the core and edges in an intelligent
manner. This deployment should be dynamic in nature and
alterable at runtime (to add/remove resources in response to
workload or to move components between the edges and the
core). This challenging task requires consideration of how an
application might be split over two cloud locations (see for
example the automated partitioning of an application to span

multiple clouds [10]) and how this split application – or any
application – might be deployed. In this paper we introduce
a pattern-based deployment service (PDS) to automate the
deployment of applications to the multi-cloud.

This novel deployment service integrates the concepts of
system patterns [11], [12], multi-clouds and various industrial
best practices (e.g., configuration management tools, RESTful
services, etc.). The key design requirements were (a) to facili-
tate application deployments across the SAVI test-bed (i.e., on
the SAVI cloud composed of a core and multiple edges running
OpenStack) and (b) to enable dynamic adaptation through
different management strategies (e.g centralized, decentralized,
etc.). Automated deployment represents a critical capability
in the context of the SAVI project in order to explore adap-
tive management [13] of applications on a two-tiered cloud.
Beyond the functionality required for SAVI, the PDS is also
expected to automate the deployment of applications across
standard multi-clouds (e.g., OpenStack, Amazon EC2).

The inherent complexity associated with describing both a
complex application topology and its respective deployment
plan led us to abstract these concepts by way of a system pat-
tern. This pattern is expressed using an expressive, declarative,
XML-based domain specific language (DSL) that facilitates
easy representation of complex deployment concepts, entities,
relationships and services. Based on this representation, the
PDS is able to dynamically construct a cross-cloud deployment
including the acquisition and configuration of resources.

The remainder of this paper is structured as follows: we start
with identifying the requirements for the deployment service
in §II; in §III we present the service architecture and interfaces;
the implementation and usage scenarios are described in §IV
and §V, respectively; a concrete case study is discussed in §VI
and conclusions are presented in §VII.

II. BACKGROUND & REQUIREMENTS

Interest is growing in deploying applications to cloud re-
sources at all stages of the development lifecycle. Organi-
zations are increasingly adopting continuous deployment in
which application developers deploy new versions of web
applications to production environments on infrastructure-as-
a-service. Application testers and quality assurance engineers
launch applications on temporary resources acquired from
public clouds. Customers are launching new applications to
various cloud providers or even private clouds. While a de-
veloper can picture how they want the application deployed,
how that vision is realized varies based on the target clouds,
the expected workload and the properties of the application.



In short, the challenge is translating from a vision of what
the desired result is into a workflow that achieves this vision.
The following subsection will provide an overview of this
domain. The next subsection will describe our requirements
with regards to design of the PDS. The final subsection
will assess the gap between existing approaches and the
requirements, motivating the design of the PDS.

A. Overview of Deployment Approaches
Traditionally, a workflow is implemented as a script that

is dedicated to achieving some defined set of tasks (e.g.,
deploying a Java EE application to the cloud). Often the
script is hard-coded for a specific application and a specific
platform. Porting the script to another application / platform
/ cloud provider requires a significant amount of work and
often affects the stability of the system, making migrations
impractical and therefore unlikely. The root cause of the
problem is that knowledge of the workflow is hidden in a
dedicated script that is not easy to understand or reuse.

There are several configuration management tools [14] that
help with automating complex deployments to heterogeneous
systems (e.g., Chef, Puppet, and CFEngine1. These tools
employ their own domain specific languages (DSL) which are
easy to understand and reuse as they systematize the process of
workload creation by applying clear semantics and removing
code duplication.

At a higher level of abstraction, service orchestration tools
like Juju2 package multiple workflows together and make
them available to users. In fact, both Chef and Juju in-
clude community-provided workflows (called recipes for Chef,
charms for Juju); the user must combine these recipes/charms
with their own scripted instructions to achieve their desired
deployment.

Proprietary multi-cloud (e.g., hybrid cloud, two-tiered
cloud) deployment/management services like Rightscale [16]
aim to simplify the deployment/management processes for
application environments across the multi-cloud by providing
both a RESTful API and Web UI to users, hiding the com-
plexity of the automation scripts (i.e, RightScripts).

Model-driven deployment allows a deployer to specify the
elements of the desired system [17], which is automatically
translated into a workflow behind the scenes that moulds
the deployment in the shape specified by the deployer. To
address the complexity of deploying complex web applications
to the private cloud, Eilam et al. describe a mechanisms for
translating system patterns into workflows [12], an approach
currently used in the IBM PureApplication System3 and IBM
Workload Deployer4.

B. Requirements
Given the requirements of the SAVI project in particular

and the multi-cloud in general, we have defined the following

1Respectively, http://www.opscode.com/chef/, https://puppetlabs.com/, and
http://cfengine.com/ [15].

2https://juju.ubuntu.com/
3http://www.ibm.com/ibm/puresystems/us/en/pf pureapplication.html
4http://www-142.ibm.com/software/products/us/en/workload-deployer/

requirements for a deployment service. The PDS was designed
to meet these requirements.

Accessible to students and professors: Provisioning ap-
plications to complex cloud infrastructure must be accessi-
ble several types of users ranging in levels of comfort and
expertise with systems, including students and faculty. The
goal is that a user with little or no expertise in multi-cloud
deployments be given access to a service for which they
enter some parameters (e.g., location of a WAR file, etc.)
and disregard complex configuration management and the
multiple frameworks required to realize this deployment. As
many students are present for relatively short periods of time,
building expertise and gaining comfort and knowledge with
regards to using the platform must be an achievable process.
For example, a typical Masters student has up to one year of
research time, most of which should be spent on research and
not on learning tools.

Simple RESTful API and Web UI: The deployment
service must offer a RESTful API offering full programatic
access, to enable more advanced user to offer functions such
as automation and elastic scaling. At the same time, the Web
UI should act as a client for the RESTful API, providing access
to documentation and facilitating the exploration and use of
service for simple tasks.

Language for expressing patterns: A declarative, XML-
based Domain Specific Language (DSL) is specified to sim-
plify the expression of complex deployment structures and
functions. The language should allow settings at the node
level if needed, but also provide groupings at higher levels
of abstraction to remove redundancy, which limits potential
editing errors and increases comprehensibility. The use of a
pattern language allows for focus to be placed simply on the
declaration of what should be achieved by the service rather
than on how to achieve it.

Abstract away the complexity of the multi-cloud: The
service should allow for seamless deployment of applications
across multiple cloud infrastructures. This allows the developer
to focus on the application they wish to deploy rather than on
the intricacies and complexities associated with multi-cloud
configuration management.

Extensible for future research needs: This service is
designed to facilitate research in many areas of distributed
computing. A key requirement is the ability to add/remove
features on the fly, and extensibility. The service should
therefore decouple the DSL from the execution of workflows,
allowing both to evolve as needed.

Ready to be used for different communities, open source,
extensive documentation and easy installation:

Its use by researchers spanning a variety of organizations
requires open licensing. Turnover in research staff and students
requires the transfer of knowledge through documentation, and
easy installation.

Elasticity/ auto-scaling: The service should be able to
deploy an application across the multi-cloud/two-tiered cloud
and then to dynamically add / remove cloud resources (e.g.,
nodes) to the deployment as required in accordance with the

http://www.opscode.com/chef/
https://puppetlabs.com/
http://cfengine.com/
https://juju.ubuntu.com/
http://www.ibm.com/ibm/puresystems/us/en/pf_pureapplication.html
http://www-142.ibm.com/software/products/us/en/workload-deployer/


deployer’s specified elasticity policy [7].
Enable centralized, decentralized and hierarchical run-

time management: The service should be able to facilitate
autonomic management [18] of a deployed application [13],
and in particular should integrate with other components and
be agnostic to its role in management, supporting centralized,
decentralized and hierarchical management approaches.

C. Challenges with existing approaches

Given the requirements defined above, existing solutions
and configuration management tools are not entirely sufficient;
however, they may serve as a base for a more complete service.
There are several proprietary offerings that go beyond config-
uration management and work on the multi-cloud; however,
our requirements include free and open-source licensing. We
have chosen an open-source configuration management tool,
Chef, on which to build our service.

The requirement that the service be usable by researchers
at all levels of expertise and with various areas of focus
was particularly challenging, as we manage the trade-off of
simplicity and flexibility. While we aim for simplicity in
the experience of using the service, the actual workflows
we seek to run range from non-trivial to very complex.
For example, deploying an application to a two-tiered cloud
and then dynamically scaling the application’s footprint at
runtime in response to changes in workload and guided by
the user’s elasticity policy is a complex process that requires
various types of knowledge, libraries, etc. This ever expanding
functional complexity prevented us from electing to use some
of the more simple configuration management tool alternatives
(e.g., Babushka5).

In contrast, the turnover of participants on research teams
(e.g., students and post-docs) along with the ongoing need
to modify and change how various aspects of a system work
suggest that the direct use of complex configuration tools alone
is not feasible nor prudent. It is easier to extend or modify
a meta-layer that operates at a higher level using selected
features of an underlying tool, rather than modifying a major
configuration management tool that seeks to be as general as
possible and offers complex behaviours that may be entirely
out of scope for the research project.

In the next section we will introduce the architecture of the
PDS, demonstrating how this balance is negotiated by using
a meta-layer with which the user interacts and that applies a
distributed workflow abstraction onto a lower layer that utilizes
Chef. The PDS takes advantage of this unique structure in
order to provide a simple solution to the complex problem of
application deployment on multi-clouds.

III. ANATOMY OF THE PDS

In this section we will provide an overview of PDS. At a
high-level (Fig. 1), a user (who has already registered with
the system) uploads an system pattern description (SPD) file
to the service. The SPD explicitly defines/specifies the desired

5http://babushka.me/
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Fig. 1. Conceptual overview of the PDS.

application deployment to the PDS. The SPD is parsed by the
PDS into a graph which is then dynamically converted into
Chef commands that are issued, resulting in the instantiation
of a set of nodes. The software stack described in the SPD for
each node is then installed. Connections among various nodes
in the topology are resolved from the graph structure. In the
following sections we will explore this process and highlight
key features of the PDS.

A. XML-based DSL

The PDS allows users to describe their system as a system
pattern through use of its XML-based DSL. The language
recognizes the following main elements; examples are shown
in Figs. 2 and 3:

• topology: A topology represents the complete applica-
tion to be deployed to the multi-cloud/two-tiered cloud.

• container: A container represents a collection typi-
cally of nodes (e.g., a cluster). A container has a special
attribute, num_of_copies, that identifies how many
copies of the contained node exist.

• node: A node represents a virtual machine instance
(VMI). A node has several children elements including:

– key_pair_id: a SSH key previously registered
with a particular provider.

– ssh_user: the username for logging onto an in-
stance.

– cloud: the cloud on which this node should be
launched (e.g., EC2, Openstack, etc.).

– image_id: denotes the particular flavour of the
node (e.g., OS version/type, supporting software,
etc.).

– security_groups: specifies the named security
group(s) to which the particular node belongs.

– instance_type: specifies the configuration of
the VMI in terms of CPU/RAM/Storage/Network,
depending on the cloud.

– service: There can be many services defined for
each node; see below.

• service: Services represent any software process run-
ning on a given node that the user wishes to have

http://babushka.me/


<topology id=”petstore”>
<node id=”web host”>

<service name=”web server”>
<database connection node=”web host”/>
<war file>

<file name>petstore.war</file name>
<datasource>jdbc/pet</datasource>

</war file>
</service>
<service name=”database server”>

<script>petstore.sql</script>
</service>
<cloud>OpenStack</cloud>
<instance type>2</instance type>
<key pair id>demo</key pair id>
<image id>8</image id>
<ssh user>ubuntu</ssh user>

</node>
</topology>

Fig. 2. Portion of XML-based DSL.

deployed and configured. Each service has an attribute
name which identifies the type of the service (e.g.,
web server).

– database_connection: This is the name of the
node upon which a database server will be running,
and to which this service may connect.

– war_file: This element has two child elements:
file_name and datasource, referencing an up-
loaded file and the data source to use.

While functionally correct, as more nodes are added
this system pattern becomes verbose. Two extension
elements allow for (i) specifying templates (e.g.,
instance_templates) and (ii) referencing templates
(e.g., use_template). The benefit of using these two
additional element types lies in increased maintainability and
readability of the document. In Fig. 3 the use of these tags is
illustrated.

B. Graph Creation and Usage

The PDS automatically deploys a multi-node topology
across a set of clouds (e.g., multi-cloud, two-tiered cloud).
Each node in a given topology may run several services (e.g.,
a database, web application, VPN server, VPN client etc).
Consequently, the deployment of one service requires the
configuration information (such as IP address) from others.
These are referred to as deployment dependencies; two algo-
rithms are used to identify and resolve these when deploying
a topology. Algorithm 1 extracts the dependencies from the
system pattern and Algorithm 2 ensures the correct ordering
of Chef invocations.

It should be noted that in Algorithm 2, line 5, a link is
created between the Deployment Service (Fig. 1) and Chef.
Specifically, a workflow is defined that ensures the correct
recipes are run with the correct attribute settings in order to
ensure dependencies are correctly deployed.

C. Stateful Service

The notion of stateful service is an important aspect of the
PDS. It maintains a complete understanding of all deployed
application topologies for a user. The user is then able to

<topology id=”scale”>
<instance templates>

<template id=”openstack small instance”>
<cloud>OpenStack</cloud>
<instance type>2</instance type>
<key pair id>demo</key pair id>
<image id>8</image id>
<ssh user>ubuntu</ssh user>

</template>
</instance templates>
<container num of copies=”2” id=”web host container”>

<node id=”web host”>
<use template name=”openstack small instance”/>
<service name=”web server”>

<database connection node=”data host”/>
<war file>

<file name>petstore.war</file name>
<datasource>jdbc/pet</datasource>

</war file>
</service>

</node>
</container>
<node id=”data host”>

<use template name=”openstack small instance”/>
<service name=”database server”>

<script>petstore.sql</script>
</service>

</node>
<node id=”web balancer”>

<use template name=”openstack small instance”/>
<service name=”web balancer”>

<member node=”web host”/>
</service>

</node>
</topology>

Fig. 3. XML-based DSL showing the use of templates.

say what she wants the service to do (e.g., add 3 nodes to
the application server tier) without requiring any low-level
details be input. Due to the fact that the PDS deploys multiple
topologies simultaneously a benefit of this stateful awareness
is that the user is able to query it on the fly to get an up to
date picture of her deployment as it proceeds.

D. Fail-fast and Recovery Model

As multi-clouds are complex systems on commodity hard-
ware, failure of components is expected. PDS is able to detect
failures of a deployment action and mark all affected nodes,
and the overall topology, as failed. The user can then
- through use of the RESTful API - invoke the repair
action which corrects the failed deployment in an intelligent
fashion. During the repair the topology is placed back in a
deploying state and deployment continues to completion.

E. Maintainability

The code is written to be easily accessible to facilitate stu-
dent involvement in continued development. Standard design
patterns were employed (e.g., MVC). The code is documented
(e.g., 6568 lines of comments / 9927 lines of code, see
Table I). A particular focus of commenting is found in the
/app/controllers directory as the Swagger6 tool was used to
generate both the Web UI and Java client automatically from
comments embedded in the source code. There is also user
guide available to assist with using and comprehending the
system.

6https://developers.helloreverb.com/swagger/

https://developers.helloreverb.com/swagger/


Algorithm 1: Algorithm to construct a topology from the
XML-based DSL. This algorithm assumes that a user has
registered with the service and uploaded required files.
Input: XML document xml
Output: Topology topology

1 begin
2 Let nodes represent a list of nodes obtained from parsing

the xml
3 foreach node in nodes do
4 Let m be assigned the value of the node’s multiplicity
5 foreach i in m do
6 Create a vertex v
7 Assign to vertex v all services, attributes and files

associated with node
8 Add vertex v to topology topology
9 end

10 end
11 Let dependencies be the set of dependencies compiled

for the set of nodes
12 foreach dependency in dependencies do
13 Let vertex i denote the source of the depenency
14 Let vertex j denote the destination of the

dependency
15 Create an edge eij from vertex i to vertex j
16 Add eij to the topology topology
17 end
18 Ensure topology is a DAG
19 return topology
20 end

Algorithm 2: Algorithm to build the topology on the
multi-cloud/two-tiered cloud.
Input: Topology topology
Output: Functioning Application Deployment on

Multi-Cloud
1 Let undeployed denote the set of undeployed nodes in

the topology
2 begin
3 while undeployed is not empty do
4 foreach node in set of undeployed nodes where

the dependencies are resolved do
5 Define Chef configuration for this node
6 Instruct Chef to initiate the deployment
7 end
8 end
9 end

F. Dynamic Modification of Deployed Applications

From the user’s perspective adding/removing resources to
a cloud deployment is a straight-forward process (e.g., add
five nodes to this cluster). However, in reality this is a
non-trivial process that involves numerous interrelationships
and dependencies among the involved services and nodes.
Augmenting a topology’s footprint is not the same process as
initializing a deployment. Here we are dealing with running
services which may be sensitive to service disruption. This
must be carefully analyzed on a per-service basis and resolved
and managed in a careful manner. The approach used by the

TABLE I
SOURCE LINES OF CODE AND COMMENTS IN THE PDS7

Language Lines of Code Lines of Comments
Ruby 9927 6568
JSON 4224 0
Ruby Templates 1638 25
YAML 286 10
XSD 265 4
XML 184 0

PDS employs the notion of dirty nodes which represent a
node that is impacted by the addition/removal of nodes to
the system. Once the system discovers all the dirty nodes,
the system attempts to “clean” these nodes by correcting their
state and connections.

G. Chef

The PDS is responsible for translating system patterns to a
workflow of actions; the actions generated are for Chef, for
several reasons. Chef recipes are written in Ruby, as is the
PDS. Chef, as a newer tool, has been designed from the ground
up to be multi-cloud ready and has benefited from observing
some of the limitations of older approaches.

H. PDS Deployment Options

There are four ways to deploy the PDS.
• A pre-deployed/hosted solution.
• An already running PDS can deploy a new independent

PDS installation.
• An automated installer is available, which automatically

deploys Chef (i.e., server, database, workstation), the
Deployer Service, configures the system and generates
an uninstall script.

• Manual installation from documentation.

IV. IMPLEMENTATION

The PDS was developed in the Ruby programming language
and used many technologies including Phusion Passenger/Ng-
inx. The core Deployment Service was developed using Ruby
on Rails, a Mysql database and Chef was utilized as the config-
uration management tool. The complete system was significant
in scale comprising almost 10,000 lines of Ruby code (see
Table I) and 7000 lines in various supporting languages. We
used the Swagger framework for both documentation purposes
and the generation of client APIs.

V. USAGE OVERVIEW OF THE PDS

The PDS provides system pattern deployment as a service,
and is intended for use on various complex cloud infrastruc-
tures (e.g., multi-cloud, two-tiered cloud, etc.). It is accessed
over a network through a RESTful API; an organization can
deploy their own installation (recommended) or use a publicly
provided PDS.

The RESTful API exposes eight resources (Table II); some
resources have sub-resources. Each resource supports up

7Note Ruby on Rails is responsible for some code generation that is
included here. Code generated by the Swagger library is not included.



to five methods: list, get, create, delete, modify
(which roughly correspond to GET, POST, DELETE, and
PUT). The topology resource is used to create and modify
system patterns; its supported methods are presented in more
depth in Table III. Due to space limitations, the other resources
are not presented in detail; an installed PDS includes live
documentation, or one may consult the online documentation8.

The remainder of this section will consider two illustrative
scenarios for deploying an an application using the PDS. The
first scenario will deploy the application to a single-node
development environment. The second scenario will deploy
the same application to a a multi-node environment on EC2
(e.g. for quality assurance).

A. Single Node Scenario

In this scenario, a standard Java EE application is deployed
to an application server, with a database running on the same
VMI. The first step is authoring a pattern describing the
deployment; we use the example presented in Fig. 2. Second,
the user uploads her credentials. This is done by invoking
the create method on the /api/credentials endpoint. Next,
the user uploads the application WAR file and a database
generation script file using create on the /api/uploaded
files. Fourth, the user submits the pattern using the method
create on the /api/topologies endpoint, receiving a unique
id (tid). To actually deploy the topology the user invokes
the method modify on the /api/topologies/{tid} endpoint,
with operation set to deploy. At this point, the PDS
begins deploying the application to the cloud identified in the
pattern. As the user waits for deployment to complete, they can
check the status of their application by invoking the method
get on the /api/topologies/{tid} endpoint. The URL of the
deployed application will be included in the response once
the application is in the deployed state.

B. Multi-Node Scenario & Automated Repair

Typical production (and therefore quality assurance envi-
ronments) involve multi-tiered, multi-node deployments. This
scenario involves a more complex pattern including a front-
end web balancer node, two application server nodes and a
database server node. We will use the pattern presented in
Fig. 3 for this example.

Despite the increased complexity of the deployment, us-
ing PDS proceeds as before: the new topology is uploaded
using create on /api/topologies. The same credentials and
uploaded files can be used, illustrating the high reusability of
pattern-based deployments. The new topology can be deployed
and undeployed as described previously. As this deploy-
ment involves several additional VMIs, which are notoriously
unreliable, let us consider a failed virtual machine causes
deployment to halt. The status reported by invoking get on
the /api/topologies/{tid} endpoint will be “failed”. In large
distributed environments, there are best practices with regards
to understanding what has gone wrong with any form of au-
tomation. A first check might involve determining whether the

8https://github.com/ceraslabs/pattern-deployer

nodes are up. This might be followed by ensuring important
services are running, etc. Assuming the problem is with the
envorinment and not with the uploaded topology, PDS offers
an automatic repair feature. By invoking the method modify
on the /api/topologies/{tid} endpoint with the operation set
to repair, PDS can be instructed to automatically correct
issues (re-deploy nodes, restart services, etc.) and complete
the application deployment.

In this multi-node scenario, we deployed two nodes. In
anticipation of (or in response to) increased workload, a
deployer may wish to scale up the application server tier.
PDS allows the scaling of a running topology, by invoking
the modify method on the container resource via the
/api/topologies/{tid}/containers endpoint with an integer pa-
rameter expressing the desired size of the container.

After quality assurance is completed, the user can tear-
down their application infrastructure by invoking the modify
method on the /api/topologies/{tid} endpoint with the opera-
tion specified as undeploy.

VI. CASE STUDIES

The PDS has been used to deploy applications within the
SAVI project [19], but is also being used in more complex
interactions as described in the following two case studies.

A. Supporting a Multicloud Application Management Plat-
form

As the complexity of cloud systems increases, through
multi-cloud deployments or two-tiered clouds like those pro-
posed by SAVI, the ability to manage applications automati-
cally becomes more important. With the growth of rapid/con-
tinuous deployment [20] and DevOps [21] approaches to ap-
plication development and deployment, application developers
are more interested in authoring code for self-managing their
own applications. To address these needs, we introduced the
X-Cloud9 Application Management Platform (XCAMP) [13]
which takes a developer-centric perspective allowing auto-
nomic logic to be specified in the language of the developer’s
choice using their preferred environment and according to the
methodology of their choice. This platform will be piloted in
the SAVI project. The PDS is one of the cornerstones of this
approach, along with a scalable multi-cloud ready monitoring
system [22]. A key objective during the design of the platform
was how to allow a developer to develop management logic
with the same level of comfort and ease with which they
develop business logic, which meant allowing a pattern-based
model so they could specify the desired end result rather than
the steps required to reach that end result.

XCAMP allows a developer to provide (i) a system pattern
understood by PDS, (ii) a binary of their application, and (iii)
an autonomic Management Logic Component (MLC), which
is simply a web application that can be deployed by the PDS.
Monitoring data, and information from the PDS about the
state of the deployed application, is passed to the MLC, which

9The X is pronounced ‘cross’.
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TABLE II
LIST OF RESOURCES; MOST SUPPORT GET, POST, PUT, AND DELETE.

Resource Description Path
container Used to group nodes in a collective unit (e.g. application server

tier). Containers can be scaled up and down at runtime.
/api/topologies/{tid}/containers

credential Used for uploading credentials that are used for authenticating
users against their chosen cloud system.

/api/credentials

node Represents individual instances / virtual machines / servers. /api/topologies/{tid}/nodes
/api/topologies/{tid}/containers/{cid}/nodes

service Represents an application or service that runs on a node.

/api/topologies/{tid}/nodes/{nid}/services
/api/topologies/{tid}/containers/{cid}/

nodes/{nid}/services
/api/topologies/{tid}/templates/{temid}/services

supporting service A set of services shared by multiple topologies, e.g. DNS server,
certificate authority, etc.

/api/supporting services

template Creates and modifies templates for nodes. /api/topologies/{tid}/templates
topology Represents the overall system pattern: how all of the containers,

nodes, and services are related. Users can create, query, repair,
deploy, or undeploy their system patterns.

/api/topologies

uploaded file Used to upload file(s): private keys, application archives (WAR,
etc.), SQL scripts.

/api/uploaded files

TABLE III
TOPOLOGY RESOURCE APIS

Methods HTTP Description Path
list GET List all topologies. /api/topologies
get GET Get topology with “tid”. /api/topologies/{tid}
create POST Create a topology. This method requires users to submit their system pattern as a input

parameter and create a topology based on the submitted pattern.
/api/topologies/

delete DELETE Delete the topology with “tid”. /api/topologies/{tid}
modify PUT Modify topology with “tid” using an operation: “deploy”, “undeploy”, “repair”, “re-

name”, and “update description”. “deploy” initiates translation from the pattern into
a Chef workflow and deploys the application; “undeploy” terminates all resources
involved in the topology; “repair” will recover a failed topology; “rename” and
“update description” change the metadata of the topology.

/api/topologies/{tid}

returns actions to modify the application topology. XCAMP
components are responsible for translating the monitoring data
and the PDS data to an abstract view understandable by the
application developer (e.g. component names instead of IP
addresses). The actions produced by the MLC are similarly
translated into invocations of the PDS to enact the changes.

In a sample implementation on XCAMP, we demonstrated
the ability and deploy to a hybrid cloud, with a local (edge)
cloud running locally on Openstack and a remote (core) cloud
in Amazon EC2, adaptively bursting to add nodes to the public
cloud when we ran out of private resources. Using the Java
client provided with PDS allowed for easy integration with the
RESTful service.

Integration with PDS allowed XCAMP to focus on the
platform for adaptive management, relying on PDS to deploy
the application topology, maintain the state of a deployed
topology, and modify a deployed topology.

B. Realizing the AERIE Architecture

AERIE [8] is a reference architecture for overlaying private
clouds on public clouds. A set of supporting technologies
are used to isolate the private cloud from shared physical
resources, providing mitigation of security risks, a common

fabric over heterogeneous providers, and more control. De-
ploying these supporting technologies and an application on
top of the resulting private cloud is more complex than a
standard cloud deployment. Here we describe an ongoing
effort to automate the deployment of an AERIE-compliant
system to the public cloud.

An overview of the reference architecture is shown in
Figure 4. A key technology in AERIE is nested virtualization,
where a virtual resource provided by the public cloud hosts a
hypervisor (“container”), which hosts its own virtual machines
(“inner instances”). These virtual machines are connected via
virtual channels, implemented using VPNs, and run from
encrypted disk images. Each outer instance includes a host in-
trusion detection and protection system. Public internet access
to the inner instances, and the outer instances, is controlled
by a gateway and a bulwark, which offer network intrusion
detection and protection services and directs traffic to the
correct inner / outer instance.

The services running on the actual instances are supported
by a set of services running in a private datacenter: a DNS
service, a private database, persistent storage for keys and disk
images, and a controller with logic to manage the topology.



Controller

Image 
Store

Private 
Data Store

Key Store

DNS 
Service

Outer Instance

Container

Trusted 
Instance Agent

Encryption 
Service

Health 
Monitor

V-Channel 
Agent

Inner Instance

Public CloudPrivate Datacenter

x n

GatewayBulwark Public 
Internet

Inner Instance
Inner Instance
Inner Instance
Inner Instance

Fig. 4. The logical components of the AERIE reference architecture, from [8].

To deploy this complex topology with PDS, we include the
tools and services running in the private cloud as supporting
services, which can be created, deployed, and managed via the
supporting_service resource. These components may
only be deployed by privileged users, a rule enforced by
the user management and permissions system of PDS. These
services are deployed first, and information is available about
these services as the remainder of the topology is deployed.

To build the nested virtual machines with the supporting
services, we describe the desired nodes, their services, and
the relationships among them using the XML-based DSL.
For each inner instance, we insert an node, declare services
inside that node, and request nested virtualization using the
nest_within element which references the outer instance
node. Each outer instance is its own node with declared
services. Bulwarks and gateways are defined using their own
nodes.

We are finding that using PDS to realize AERIE archi-
tectures reduces the effort required to achieve application
deployments with desirable features that require complex and
sophisticated deployment workflows.

VII. CONCLUSION AND FUTURE WORK

We presented a deployment service for multi cloud environ-
ments. The service is installable in one or multiple clouds and
allows the end user to specify a deployment, upload the de-
ployment in the cloud, execute the deployment and monitor its
execution. Also, the service facilitates changes in a deployed
topology, hence enabling and autonomic runtime management.
The service is accessible thorough both a RESTful interface
and through a Web UI. We described the motivation for the
service, identified its requirements, described the architecture
and illustrated its usage through a case study.
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