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Frequency-Selective Fading Channel with
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Abstract—This paper presents an energy-efficient power allo-
cation for a multicarrier link over a frequency-selective fading
channel with a delay-outage probability constraint. The power
adaptation maximizes the system energy efficiency (EE), for-
mulated as the ratio of the achieved effective capacity (EC) to
the total expenditure power, including both transmission power
and rate-independent circuit power. We prove that this objective
function is quasi-concave in the transmission power, and derive
the global optimum solution using fractional programming.
Based on the obtained solution, we develop a power adaptation
algorithm consisting of two steps: (i) establishing the optimum
average power level corresponding to the maximum achievable
EE with no transmit power constraint, and then (ii) for a given
power constraint, jointly distributing the power over time and
frequency based on the constraint and the optimum power
level found in the first step. Analytical results show that the
proposed EE-based power allocation has a structure similar to
the allocation that maximizes the EC, but with a different cut-
off threshold. Our proposed joint EE-optimal power allocation
provides significant EE gains over both the joint spectral-efficient
and independent-subcarrier EE-based power allocation schemes,
where the rate-energy tradeoff becomes more pronounced with
higher frequency selectivity.

Index Terms—Multicarrier system, quality-of-service (QoS),
delay-outage probability constraint, effective capacity (EC), en-
ergy efficiency (EE), fractional programming.

I. INTRODUCTION

NEXT-GENERATION wireless networks, including the
fourth-generation (4G) cellular systems, are expected to

support diverse quality-of-service (QoS) requirements since
different services demand different levels of QoS guarantees
[1]. For example, in real-time multimedia services such as
video transmission, if a received packet violates its delay limit
then it is considered useless and must be discarded. Conse-
quently, mechanisms for guaranteeing QoS, such as resource
allocation and admission control, need to be developed in
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an efficient manner. To facilitate the design of QoS-support
communication systems, queuing analysis is required whereby
the source traffic and the channel service are matched using a
first-in-first-out (FIFO) buffer. This buffer allows the modeling
of wireless channels in terms of QoS metrics such as data rate,
delay, and QoS violation probability. In particular, effective
capacity (EC) is proposed in [2] as a QoS-aware metric that
specifies the maximum constant arrival rate that a system can
support while satisfying a target delay requirement indicated
by a QoS exponent.

The problem for maximizing the EC of a multicarrier
system with frequency-selective fading channel is studied in
[3]. It was shown that maximizing the EC at each subchannel
independently, using the optimal power adaptation policy
for single-channel flat-fading channels obtained in [4], does
not yield an optimal scheme. Hence, using the framework
of joint convex optimization, the authors in [3] propose an
optimal QoS-driven spectral-efficient power allocation under
an average transmit power constraint. The analysis shows that
when the QoS exponent increases from zero to infinity, the
optimal EC decreases accordingly from the ergodic capacity
to zero-outage capacity.

Exponentially increasing data traffic comes at the cost
of rapidly increasing energy consumption, which is some-
times unaffordable for energy-limited systems. Consequently,
energy-efficient system design has recently received growing
attention by many research groups. Energy efficiency (EE)
is defined as the data transferred per unit energy consumed
with units of bits per joule (b/J), or equivalently, the ratio of
the achieved rate to the total power expenditure. The trade-off
between EE and spectral efficiency (SE) has been investigated
in [5], whereby Shannon capacity is considered as a measure
of the service rate and the power consumption does not
account for the circuit power. In [6]–[10], the total dissipated
power is considered to have two components: circuit power in
addition to a transmission power. The EE curve as a function
of the transmit power was shown in [6] to have a bell shape
where the location of its maximum depends on the circuit
power. Under assumption of perfect channel state information
(CSI) at receiver, energy-efficient power adaptation schemes
were developed in [10] and [11] for point-to-point flat-fading
channels without and with transmit CSI, respectively. Optimal
power and subchannel allocation schemes are proposed in
[7] to maximize the EE of a wireless orthogonal frequency
division multiple access (OFDMA) system with flat-fading
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channels. In [8], energy-efficient link adaptation is addressed
for frequency-selective fading channels, where iterative algo-
rithms were developed to obtain the optimal solution. Energy-
efficient link adaptation is also studied in [9] for a delay-
unconstrained transmission on a frequency-selective parallel
channel with sum rate-dependent circuit power, whereby a
concave-convex fractional programming approach is used to
solve the corresponding optimization problem.

By employing the EC formulation rather than the Shannon
capacity, the rate-energy tradeoff of flat-fading channels under
delay-outage probability constraints has been analyzed in
[12], [13]. The considered models assume that the system
operates under queuing constraints in the form of limitations
on buffer violation probabilities. Specifically, [12] determines
the minimum bit energy required to satisfy a certain delay
constraint where the analysis has only been carried out in
the low-power and wideband regimes. On the other hand, the
studies in [12] and [13] did not develop a power allocation for
optimizing the EE, nor did they consider the circuit power in
their corresponding power models. An energy-efficient power
allocation for delay-limited systems over flat-fading channels
is proposed in [14] when taking into account the effect of the
circuit power consumption on the maximum achievable EE.

In this paper, we develop an optimal energy-efficient power
allocation strategy for a point-to-point multicarrier link over a
frequency-selective fading channel under a target delay-outage
probability constraint. First, by integrating the concept of EC
with EE, the power adaptation policy aims at maximizing the
system QoS-driven EE, defined by the ratio of the EC to the
total expenditure power in units of b/J/Hz. The total power
dissipation model includes a constant circuit power and a
transmission power scaled by the power amplifier efficiency.
Since independent subcarrier optimization does not provide
an optimum EC maximization [3], it also cannot yield an
optimal EE strategy. Therefore, a joint optimization over both
frequency and time is formulated. To solve the underlying
optimization problem using fractional programming, we start
by proving that the objective function is a quasi-concave
function of the transmit power allocations, and, as such,
any stationary point is a global maximum. Next, we break
down the problem into two main steps. In the first step, we
find the average sum power needed to maximize the QoS-
driven EE without any transmit power constraint. Then, in the
second step, a power constraint is introduced and the transmit
power is distributed optimally according to the constraint
and the average sum power determined in the first step. The
mathematical analysis provides insight into how the subcarrier
powers should be chosen to optimize the QoS-driven EE.
Specifically, the optimal subcarrier power allocation is deter-
mined as a function of the subchannel power gains, as well
as the delay-QoS requirement. The derived scheme indicates
that when the delay requirement becomes more stringent,
the instantaneous transmission power converges accordingly
from traditional water-filling to the channel inversion with
fixed rate transmission. Furthermore, the trade-off between SE
and EE in delay-limited multicarrier systems is analyzed by
comparing the performances of the corresponding optimum
power schemes. Using numerical analysis, we finally study
the impact of the delay requirement, circuit power, transmit

power constraint, and frequency selectivity on the rate-energy
tradeoff.

The rest of this paper is organized as follows. In Section
II, we describe a generic multicarrier wireless system model,
along with its underlying assumptions and parameters, where
the framework for delay-QoS provisioning is highlighted.
Then, in Section III, we first formulate the energy-efficient
optimization problem under both independent and joint sub-
carrier allocations, wherein a jointly optimal power allocation
policy is derived to maximize the QoS-driven EE of the multi-
carrier system without any power constraint. Next, we consider
the scenario where the average sum power is limited and
accordingly determine the power allocation that maximizes
the system QoS-driven EE with sum power constraint. Finally,
simulation results and conclusions are presented in Section IV.

II. SYSTEM MODEL

A. Multicarrier Transmission Model

We consider a point-to-point link over a wireless frequency-
selective fading channel with a total bandwidth of B. Due
to frequency selectivity, a multicarrier system is employed
wherein N multiple subcarriers, each with a bandwidth of
B/N , are used for transmission from the transmitter to the
receiver. The general block diagram of the system model
is illustrated in Fig. 1(a). In this model, the upper-layer
data traffic enters a FIFO buffer at a constant arrival rate.
The discrete-time channel input-output relation during the ith

multicarrier symbol is given by

yn[i] = hn[i]xn[i] + nn[i], (1)

where yn[i], xn[i], hn[i] and nn[i] are the channel output,
channel input, fading channel response and complex noise at
the nth subcarrier, respectively. The system is assumed to have
ideal Nyquist transmission symbol rate with Ts = N

B being
the multicarrier symbol period. The choice of N depends on
how frequency-selective is the fading channel such that each
subcarrier undergoes independent frequency-flat fading.

The channel is considered to experience block fading
where the channel gains of the N subcarriers are invariant
during each fading-block, but change independently from
one block to other. The length of each fading-block, de-
noted by Tf, is assumed to be an integer multiple of Ts.
Denote the nth subchannel power gain at block-index t by
{γn[t] = |hn [t]|2 , n ∈ N0}, where N0 = {1, 2, . . . , N}
represents the set of all potential subcarriers. The joint prob-
ability density function (pdf) of the subchannel power gains
γ [t] =

[
γ1 [t] γ2 [t] ... γN [t]

]
is then given by ρ (γ).

Each subcarrier is also assumed to experience independent
identically distributed (i.i.d.) additive white Gaussian noise
with power spectral density η0

2 .
We further assume that the transmitter has perfect knowl-

edge of the instantaneous CSI fed back from the receiver
without delay. Based on a given QoS constraint, represented
by the QoS exponent θ (to be detailed in the following
subsections II-B and II-C), and the instantaneous subchannel
power gains γ [t], adaptive modulation and coding (AMC)
is first applied at the transmitter side to enhance the system
performance, followed by a subcarrier power allocation policy
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Fig. 1(a): Multicarrier System Model.

Fig. 1(b): Queueing SystemModel.
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Fig. 1: Multicarrier System.

{Pn (θ,γ [t]) , ∀n ∈ N0}. Although the power allocation is
based on an interval duration of Tf, it is important to note
that the transmitter buffer operates at the multicarrier symbol
transmission rate of 1

Ts
as shown in (1). At the receiver,

the subchannel power gains are perfectly estimated and the
received symbols are then demodulated and decoded accord-
ingly. During the tth fading-block, the instantaneous received
signal-to-noise ratio at the nth subcarrier can be expressed as

SNRn [t] = Pn (θ,γ [t]) · γn [t]

PLη0
(
B
N

) , ∀n ∈ N0, (2)

where B
N is the subcarrier bandwidth and PL is the distance-

based path loss power. Assuming AMC can achieve Shannon
capacity, the total instantaneous service rate of the multicarrier
system at the tth fading-block is

R [t] =
1

N

N∑
n=1

log2

(
1 +

Pn (θ,γ [t]) γn [t]

PLη0
(
B
N

)
)
, (b/s/Hz) .

(3)

B. Effective Capacity

To analyze the buffer overflow probability, and indirectly the
delay-outage probability, we apply the link-layer EC notion
introduced in [2], where a wireless link is characterized by
the QoS exponent θ of the connection, and the probability
of nonempty buffer. The EC function specifies the maximum
constant arrival rate that the system can support to maintain
a target delay requirement indicated by θ. The queue model
of our multicarrier system is depicted in Fig. 1(b). The source
data rate is fixed to a constant μ (b/s/Hz), whereas the
stationary and ergodic service process R [t] is variable.

Given that the Gärtner-Ellis Theorem assumptions in [1]
are satisfied, the EC function of the underlying multicarrier
system with i.i.d. subchannels can be expressed as

Ec (θ) = − 1

θTfB
ln
(
E

[
e−θBTfR[t]

])
, (b/s/Hz) , (4)

where the EC is normalized to the fading-block length Tf

and system bandwidth B. Substituting the expression of R[t]
from (3) into (4), the resulting EC is obtained as

Ec (θ,P (θ,γ)) =

− 1

α
log2

⎛
⎝Eγ

⎡
⎣ N∏
n=1

(
1 +

Pn (θ,γ) γn

PLη0
(
B
N

)
)− α

N

⎤
⎦
⎞
⎠ , (b/s/Hz) ,

(5)

where P (θ,γ) =
[
P1 (θ,γ) P2 (θ,γ) ... PN (θ,γ)

]
de-

notes a N × 1 vector of subcarrier power allocations, α ≡
θTfB
ln(2) , Eγ [·] indicates the expectation over the pdf of γ and
the time index t is omitted for notational simplicity without
causing ambiguity.

C. Delay-outage Probability

Based on the large-deviation principle theorem and assum-
ing that the steady-state queue length exists, the probability
that the queue length Q (t) exceeds a certain threshold x
decays exponentially fast as the threshold x increases [1], as
such

− lim
x→∞

ln (Pr{Q (∞) ≥ x})
x

= θ. (6)

Large and small values of θ correspond to fast and slow
decaying rates indicating stringent and loose QoS require-
ments, respectively. For example, when θ → 0, the system can
tolerate an arbitrarily long delay, whereas the system cannot
tolerate any delay when θ → ∞. The delay-outage probability,
defined as the probability that the delay exceeds a maximum
delay-bound Dmax, can be estimated as [2]

Pr{Delay ≥ Dmax} � γ(c) (μ) e−μθ(μ)Dmax , (7)

where Dmax is expressed in units of 1/B. For a given μ,
γ(c) (μ) ≡ Pr{Q (t) ≥ 0} is the probability that the buffer
is nonempty at a time t and can be approximated as the
ratio of the constant arrival rate to the average service rate
[1], i.e., γ(c) (μ) � μ

E[R[t]] , while θ (μ) is simply the QoS
exponent θ determined by the inverse function of the EC,
E−1

c (μ). Hence, to meet a target delay-probability limit Pout,
i.e., Pr{Delay ≥ Dmax} ≤ Pout, a source needs to limit its data
rate to a maximum of μ, where μ is the solution to (7).

III. QOS-DRIVEN ENERGY-EFFICIENT POWER

ALLOCATION

Assuming perfect CSI at the transmitter, an opportunistic
power adaptation scheme can be developed to minimize the
energy consumption per bit, or equivalently, maximize the
transmitted data per unit energy, while satisfying a target
delay-outage probability limit. The metric of interest in this
case is the QoS-driven EE for delay-limited systems defined
as the ratio of the EC to the total expenditure power. The total
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power dissipation model includes a constant circuit power PC

and a transmission power scaled by the power amplifier effi-
ciency ε. The rate-independent circuit power PC corresponds
to the power dissipated in device electronics. Accordingly, the
QoS-driven EE is mathematically represented as

EE (θ) =

− 1
α log2

(
Eγ

[∏N
n=1

(
1 + NPn(θ,γ)γn

KL

)− α
N

])

PC + ε · Eγ

[∑N
n=1 Pn (θ,γ)

] ,

(8)

where KL ≡ PLN0B is a loss factor denoting the product
of path loss and noise power. In order to normalize the
system performance with respect to KL, we define P R

n (θ,γ) ≡
Pn(θ,γ)

KL
as the ratio of the transmit power at the nth subcarrier

to the path loss and noise power. Thus, the EC formula can
be expressed as

Ec
(
θ,P R (θ,γ)

)
= − 1

α
log2

(
Eγ

[
N∏

n=1

(
1 +N · P R

n (θ,γ) γn
)− α

N

])
, (9)

where P R (θ,γ) =
[
P R
1 (θ,γ) P R

2 (θ,γ) ... P R
N (θ,γ)

]
.

A. Independent Subcarrier Optimization

As a reference, we first consider a simple EE power
allocation scheme whereby the power is equally divided over
the N subchannels such that the power allocation in each
subcarrier P R

n can be independently performed and, thus, it
only depends on its corresponding channel power gain γn.
For i.i.d. fading over the subcarriers, this is equivalent to
maximizing the total EE of the multicarrier system using the
optimal power adaptation policy for the single carrier flat-
fading transmission proposed in [14]. In this case, the EC
of N independently optimized i.i.d. subchannels is given by
E

(N)
c (θ) = E

(1)
c
(

θ
N

)
[3], where E

(1)
c (θ) is the normalized

EC of a flat-fading channel with bandwidth B. Hence, the EE
maximization can be expressed as

max
P R≥0

1

εKL
· E

(1)
c
(

θ
N

)
PCR + Eγ [P R(θ, γ)]

, (10)

where P R(θ, γ) is the total power spend over a bandwidth B,
γ is the channel power gain of a single carrier flat-fading and
PCR = PC

εKL
is the normalized circuit power. The corresponding

subcarrier power allocations can be obtained using [4], [14]
as

P R
n (θ, γn) =

1

N

[
1

δ
N

α+N γn
α

α+N

− 1

γn

]+
, n ∈ N0, (11)

where [x]
+
= max(0, x) and δ is a cutoff threshold that can

be found numerically to maximize (10).
It was shown in [3] that maximizing the EC at each

subchannel independently, using the optimal power adaptation
policy for the single channel transmission, does not yield a SE-
optimal power scheme. In fact, by using the independent allo-
cation over N i.i.d. subchannels, the resulting EC, E(N)

c (θ),
converges to zero as θ → ∞ for any finite N . In turn, by
applying the independent EE optimization approach in (11)

to our underlying multicarrier system, the achievable EE at
very stringent θ is expected to converge to zero for any finite
power. Hence, independently optimizing the power allocated
to the subcarriers can not yield an EE-optimal power scheme.
In the following sections, we propose an optimal EE power
allocation policy where the power is jointly distributed over
both frequency and time.

B. Jointly Optimal Energy-Efficient Power Allocation Policy
without Transmit Power Constraint

First, the unconstrained optimization problem is tackled
without considering any input transmit power constraint, serv-
ing as a milestone towards finding an EE-optimal power
allocation subject to an average sum power constraint. To
maximize the QoS-driven EE, the optimization problem can
now be formulated as follows

EEopt (θ) = max
P R

n≥0,n∈N0

1

εKL
· Ec

(
θ,P R (θ,γ)

)
PCR + Eγ

[∑N
n=1 P

R
n (θ,γ)

] .
(12)

In [15], a mathematical framework called fractional program-
ming is provided to solve optimization problems where the
objective function is a ratio of two real-valued functions.
Specifically, the authors showed that a broad class of EE
maximization problems can be solved efficiently provided the
rate is a concave function of the transmit power. To use
this solution methodology to solve our optimization problem
in (12), we prove that the EC, Ec

(
θ,P R (θ,γ)

)
, is concave on

the domain where P R is defined by verifying the convexity of
f
(
P R
)
= ln

(
Eγ

[∏N
n=1

(
1 +N · P R

n (θ,γ) γn
)− α

N

])
. For a

multi-variable function to be convex, we need to show that the
Hessian of f

(
P R
)

is positive semi-definite (PSD). We start
by introducing the following theorem.

Theorem 1: The Hessian of the function f
(
P R
)
, denoted

by ∇2f
(
P R
)
, is an N × N real symmetric matrix whose

eigenvalues are b − a and b + (N − 1) a with a ≡ ∂2f(P R)
∂P R

i P
R
j

and b ≡ ∂2f(P R)
∂P R

i
2 , ∀i, j = 1, 2, ..., N, i �= j.

Proof: The proof is provided in Appendix A.
Using the fact that a symmetric matrix is PSD if and only if
all its eigenvalues are positive, we therefore proceed with the
following theorem to show that both eigenvalues are indeed
positive.

Theorem 2: All the eigenvalues of ∇2f
(
P R
)
, namely b−a

and b+(N − 1) a, are positive, and in turn ∇2f
(
P R
)

is PSD.
Proof: The proof is provided in Appendix B.

Accordingly, the objective function in (12) is a ratio of a
concave to an affine function in P R (θ,γ), and hence a
global maximum can be obtained by fractional program-
ming. Specifically, by using the variable transformation t =(
PCR + Eγ

[∑N
n=1 P

R
n (θ,γ)

])−1

, we get an equivalent con-
cave optimization problem

max
P R

n≥0,n∈N0

t · Ec
(
θ,P R (θ,γ)

)
(13a)

subject to t

(
PCR + Eγ

[
N∑

n=1

P R
n (θ,γ)

])
= 1. (13b)
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Since (13a) is a concave function and the equality constraint
in (13b) is an affine function, the Karush-Kuhn-Tucker (KKT)
conditions are both necessary and sufficient for optimality.
Introducing a Lagrangian multiplier λ ≥ 0 for that equality
constraint and {υn ≥ 0, n = 1, 2, . . . , N} for the N inequality
constraints {P R

n ≥ 0, n ∈ N0}, the Lagrangian is

L (P R
n , t, λ, υn

)
= −t ·Ec

(
θ,P R (θ,γ)

)
+ λ

[
t

(
PCR + Eγ

[
N∑

n=1

P R
n

])
− 1

]
−

N∑
n=1

υnP
R
n ,

where, hereafter, P R
n (θ,γ) is denoted as P R

n for notational
simplicity. Also, the underlying KKT conditions are(

P R
n

)∗ ≥ 0, ∀n ∈ N0 (14a)

t

(
PCR + Eγ

[
N∑

n=1

(
P R
n

)∗])− 1 = 0 (14b)

− t
dEc

(
θ,P R

)
d (P R

n )
∗ + λt

∫ ∞

0

...

∫ ∞

0

ρ (γ) dγ1... dγN = υn.

(14c)

Based on the concept of complementary slackness, if the strict
inequality P R

n > 0 holds for any n = 1, 2, . . . , N , then we
have υn = 0. Thus, the following two cases need to be
considered to find the optimal power allocations

(
P R
n

)∗
.

1) Case 1 : P R
n > 0, ∀n = 1, 2, ..., N : As such, all

subcarriers are allocated non-zero power for transmission.
Hence, based on the complementary slackness condition, all
Lagrangian multipliers {υn}Nn=1 must be equal to zero. Then,
the third condition of (14c) can be simplified as(

1 +N · P R
n γn
)− α

N −1∏
i�=n

(
1 +N · P R

i γi
)− α

N =
λκ ln(2)

γn
,

∀n ∈ N0, (15)

with κ = Eγ

[∏N
n=1

(
1 +NP R

n γn
)− α

N

]
. Note that the power

allocation of the nth subcarrier P R
n depends on all the sub-

channel power gains γ, rather than just the nth subchannel
γn. The resulting expression can be solved by multiplying the
right- and left-hand sides of the N equations in (15) together.
In turn, the optimal power allocations can be obtained as

P R
n =

1

N

⎡
⎣ 1

δ
1

α+1
∏

i∈N0
γ

α
(α+1)N

i

− 1

γn

⎤
⎦ , n ∈ N0, (16)

where δ ≡ λκ ln(2) is a cut-off threshold below which
no power is allocated for transmission. The above power
allocations are optimal if and only if each subcarrier is
assigned a power allocation that is strictly positive, i.e.,
P R
n > 0 ∀n = 1, 2, . . . , N . In other words, the solution is

optimal only if N1 = N0 = {1, 2, . . . , N}, where N1 is
defined as

N1 =

⎧⎨
⎩n ∈ N0

∣∣∣∣∣ 1N
⎡
⎣ 1

δ
1

α+1
∏

i∈N0
γ

α
(α+1)N

i

− 1

γn

⎤
⎦ ≥ 0

⎫⎬
⎭ .

(17)

On the other hand, if one or more subcarriers are assigned
non-positive power allocations such that N1 ⊂ N0 , then we
need to account for a different case as outlined below.

2) Case 2 : P R
m = 0 for some m ∈ 1, 2, . . . , N such that

N1 ⊂ N0: If there exists some P R
m ≤ 0, then we have to

find the set of subcarriers to which zero power should be
assigned. Since the structure of the power allocation in (16)
is similar to the one derived in [3], Lemma 1 of [3] is
applicable to our optimization problem. This lemma states
that all the power must be assigned to the subchannels that
belong to N1. Therefore, using Lemma 1, if m �∈ N1, then
P R
m must be zero. In fact, this indicates that the proposed

allocation algorithm that excludes subcarrier m whose P R
m ≤ 0

is indeed optimal. Thus, all the power must be allocated
to the subcarriers that belong to N1 wherein the values of
P R
n must be reproduced for any subcarrier n ∈ N1, while

setting P R
m = 0 if m �∈ N1. Consequently, this yields an

optimization problem that has a similar structure to the original
maximization, but the optimization space reduces from N0 to
N1 as such

max
P R

n≥0,n∈N1

− 1
α log2

(
Eγ

[∏
n∈N1

(
1 +N · P R

n γn
)− α

N

])
PCR + Eγ

[∑
n∈N1

P R
n

] .

(18)

Hence, if the strict inequality P R
n > 0 holds for all n ∈ N1,

then, the resulting optimization can be solved exactly like
before. Otherwise, if not all the subcarriers n ∈ N1 satisfy
P R
n > 0, then N1 must be further partitioned by repeating

the above process recursively until a set N ∗ can be identified
in which all subcarriers are allocated positive powers (i.e., if
Nk = Nk−1 = {n ∈ Nk|P R

n > 0}, then N ∗ = Nk). After
obtaining N ∗, the optimal power allocations are computed as

P R
n =

⎧⎪⎨
⎪⎩

1

N

[
1

δ
N

N+αN∗ ∏
i∈N∗ γ

α
N+αN∗
i

− 1

γn

]
, n ∈ N ∗

0, otherwise,
(19)

where N∗ = |N ∗| represents the cardinality of N ∗. Since all
unknowns have been expressed as functions of λ, this reduces
to finding the optimal λ∗ > 0 from the condition

∇tL = −Ec

(
θ, (P R)∗

)
+ λ∗

(
PCR + Eγ

[
N∑

n=1

(
P R
n

)∗])
= 0.

(20)

λ∗ can be determined numerically using a bisection root-
finding search algorithm, and in turn, the cut-off threshold
δ∗ is obtained. Now, the maximum achievable optimal QoS-
driven EE in b/J/Hz can then be calculated as

EEopt (θ) =
λ∗

εKL
. (21)

Whereas the complexity of the independent subcarrier op-
timization of Section III-A grows linearly with the number of
subcarriers N , i.e., of O(N), the complexity of the jointly
optimal power allocation is of O(

∑K
k=0 |Nk|) = O(dN)

where K + 1 ≤ N is the required number of recursions to
obtain N ∗ and 1 ≤ d ≤ (N + 1)/2. In other words, in the
worst-case scenario where Nk always has one less element
than Nk−1 (i.e., |Nk| = |Nk−1| − 1, ∀k = 1, . . . , N − 1), N
recursions are required and hence, the worst-case complexity
is of O (1 + 2 + ...+N) = O

(
N(N+1)

2

)
≈ O

(
N2
)
.
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The analytical results show that the derived energy-efficient
power allocation in (19) has a structure that is identical to the
QoS-driven spectral-efficient power adaptation of [3], but with
a different cut-off threshold. In fact, given a power allocation
strategy that maximizes the QoS-driven EE without transmit
power constraint, one can show that this allocation is essen-
tially the same as the power allocation for maximizing the
EC with a sum power constraint P ∗

un = Eγ

[∑N
n=1

(
P R
n

)∗]
.

In other words, our EE maximzation problem can be solved
in two steps. In the first step, we compute the optimal δ∗

by solving (20). Next, we can determine the corresponding
average sum power P ∗

un at which the maximum EE will be
achieved by inserting δ∗ into

P ∗
un = Eγ

[
N∑

n=1

(
P R
n

)] ∣∣∣∣∣
δ=δ∗

. (22)

Hence, the optimum value for the denominator of the EE
objective function in (12) is now fixed to PC + P ∗

un. Accord-
ingly, the EE maximization reduces to maximizing the EC
with an average input power limit set to P ∗

un. As such, in the
second step, the transmit power is optimally distributed over
frequency and time according to P ∗

un found earlier in the first
step.

Since the underlying setup is a multicarrier system, this
power strategy can be essentially viewed as a subcarrier
selection scheme where a subset of the subcarriers is selected
for transmission while excluding those unwanted subcarriers
based on the channel statistics and delay requirement. As
we will see later in Section IV, when the QoS exponent θ
increases from zero to infinity, the instantaneous transmission
power is shown to converge accordingly from traditional
water-filling to channel inversion with fixed rate transmission.

C. Energy-Efficient Power Allocation Policy with Average
Sum Power Constraint

After solving the power-unconstrained problem in the pre-
vious section, we will now turn to the scenario where the
average sum transmit power is limited by P . Consequently,
the optimization problem can now be formulated as follows:

max
P R

n≥0,n∈N0

1

εKL
· Ec

(
θ,P R (θ,γ)

)
PCR + ε · Eγ

[∑N
n=1 P

R
n

]

subject to Eγ

[
N∑

n=1

P R
n

]
≤ P R,

(23)

with P R = P
KL

being the average sum transmit power con-
straint scaled by the loss factor KL. Generally speaking, the
EE maximization problem is different from the SE maximiza-
tion problem in the sense that the transmit power constraint is
not necessarily satisfied with equality in EE-optimal systems
as opposed to the SE-optimal case.

First, we consider the scenario where P ∗
un ≤ P R such

that the transmit power limit is actually higher than the
required power for maximizing the unconstrained QoS-driven
EE. Consequently, the power allocation for maximizing the
unconstrained QoS-driven EE does indeed satisfy the average
sum power constraint, and thus, the maximum QoS-driven EE

for the power-constrained problem is achieved using the same
optimal solution as the unconstrained problem (i.e., P ∗

un).
Second, the scenario where P ∗

un > P R is studied such
that the solution obtained for the unconstrained problem is
no longer valid. Hence, in this case, we have the following
theorem to formally characterize this problem.

Theorem 3: The constrained QoS-driven EE optimization
problem with a maximum power limit P R < P ∗

un is equivalent
to an EC maximization with sum power constraint P R.

Proof: The proof is provided in Appendix C.
Therefore, the optimal EE in this scenario is achieved by
consuming all of the available power P R. In other words, the
power allocation that maximizes the constrained QoS-driven
EE turns out to be the same as the power adaptation policy
proposed in [3] to maximize the EC with an average power
constraint, as given below:

max
P R

n≥0,n∈N0

Ec
(
θ,P R (θ,γ)

)

subject to Eγ

[
N∑

n=1

P R
n (θ,γ)

]
≤ P R

(24)

IV. ILLUSTRATIVE RESULTS

In this section, we simulate a delay-constrained multicarrier
system to evaluate the performance of the proposed jointly
EE-optimal power allocation and investigate the impact of
the circuit power, frequency selectivity, and transmit power
constraint on the achievable EE. In addition, the proposed
scheme is compared with both the independent subcarrier EE-
based optimization approach and the SE-based power adapta-
tion of [3] in terms of EE as well as EC, whereby the rate-
energy tradeoff is illustrated. We consider a Rayleigh fading
channel such that the subcarrier power gains γ1, γ2, . . . , γn
are exponentially distributed with unit mean. In the following
results, unless otherwise specified, the scaled circuit power
PCR is considered to be 0.1, the average sum power constraint
is assumed to be P R = 1W , and BTf = 200.

We start by examining the characteristics of the jointly
optimal power adaptation policy in (19) by plotting the sub-
carrier power allocation P R

1 as a function of the channel power
gains γ and the QoS exponent θ. Fig. 2a indicates that when
θ increases, the instantaneous transmission power converges
accordingly from traditional water-filling to channel inversion
with fixed rate transmission. For instance, in systems with
tight delay requirements, e.g., θ = 0.1, the power increases
to some certain threshold and then it starts to decrease with
the channel power gain. Next, we investigate the impact of
the circuit power PCR on the optimal instantaneous power.
We conclude from Fig. 2b that as the circuit power increases
from PCR = 0.1 to PCR = 10, the instantaneous power
curves become more steep and the cutoff thresholds decrease
correspondingly. Therefore, in contrary to delay-unconstrained
system, the structure of the QoS-driven EE-optimal power
allocation is not a standard water-filling approach, but rather
depends on both the circuit power and the delay requirement.

Fig. 3a shows the maximum achievable QoS-driven EE in
b/J/Hz, averaged over 106 channel realizations, versus the
QoS exponent θ for two jointly-optimal power allocation
strategies, namely SE-based and EE-based schemes. To study
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Fig. 2: Instantaneous optimal power P R
1 versus channel power

gain γ1[t] for various γ2[t] and θ in Rayleigh fading channels.

the effect of the frequency selectivity on EE, the curves are
plotted for various number of subcarriers N . For a given
channel bandwidth B, larger N indicates that the channel
is more frequency-selective, and hence, narrower subcarriers
are required to maintain frequency-flat fading subcarriers. The
achievable EE is shown to decrease as the delay requirement
becomes more stringent. The results show that the joint EE-
based scheme provides significant EE gains over the SE-based
system. In particular, for loose delay regimes, the gain in EE
is as much as 40%, whereas the relative gain gets smaller
as θ becomes more stringent. Fig. 3a also demonstrates that
the relative EE gains increase with the frequency-selectivity.
In other words, our proposed EE-based allocation is more
beneficial in fading channels with higher frequency selectivity.

We then compare the EE of our proposed jointly optimal
allocation with that of the independent subcarrier optimization
in (10). From Fig. 3b, the achievable EE of the independent ap-
proach is shown to converge to zero for all N as θ → ∞, and
hence, this simple scheme has a substantial loss in EE relative
to the optimal strategy particularly when the delay constraint
is stringent. For a given θ, the performance difference between
the two schemes becomes more pronounced as N increases
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Fig. 3: Maximum achievable QoS-Driven EE of multicarrier
system with N i.i.d. subcarriers.

(i.e. higher frequency-selectivity). This can be explained by
the fact that the proposed jointly optimal EE-based power
allocation can exploit the subchannel diversity. Furthermore,
with fixed N , the relative degradation in the achievable EE is
more remarkable for higher θ (i.e., more stringent delay-outage
constraint). For instance, at θ = 10 and N = 8, the EE of the
proposed jointly EE-optimal power allocation scheme is about
6 times that of the simple independent subcarrier optimization
scheme.

To better highlight the impact of the frequency-selectivity
on the maximum achievable EE of our proposed scheme, we
plot in Fig. 4 the optimum EE versus N for various θ. As
N increases, the optimum EE increases for any given delay
exponent θ until it saturates for larger values of N , where
systems with more stringent delay requirements benefit the
most from the frequency-selectivity. At large values of N ,
which is more practical in real-world scenarios, our scheme
manages to achieve a fixed optimal EE regardless of the
stringency of the delay constraint.

Fig. 5 plots the normalized EC of the multicarrier system
versus θ. The results illustrate a clear trade-off between SE
and EE where the increasing EE does indeed come at the
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θ.

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Delay−QoS Exponent θ (1/b)

N
or

m
al

iz
ed

 E
ffe

ct
iv

e 
C

ap
ac

ity
 (

b/
s/

H
z)

Multicarrier System with N i.i.d. Subchannels (BT
f
 = 200)

 

 

N = 2
N = 4
N = 8

Joint SE−based

Joint EE−based

Independent EE−based

Fig. 5: Effective capacity of the Multicarrier System.

cost of decreasing SE. In other words, we have to sacrifice
some rate in order to maximize the EE of the multicarrier
system. The amount of trade-off depends on θ and N , as well
as on the scaled circuit power PCR . Specifically, the results
show that there is more rate-energy tradeoff in fading channels
with higher frequency selectivity. The achievable EC of the
independent subcarrier EE-based optimization is similar to that
of the jointly optimal allocation at low values of θ. However,
unlike the joint strategy, the EC of the independent approach
converges to zero for all N as θ → ∞.

Fig. 6a plots the maximum achievable QoS-driven EE of
our proposed jointly optimal allocation versus the delay-bound
Dmax for various target delay-outage probabilities Pout. The EE
is shown to increase with increasing Dmax for any given Pout.
In other words, as the delay violation limit is relaxed, our
proposed scheme achieves better EE gains. In addition, for
a particular N , the EE decreases gradually with diminishing
outage probability, where, at low values of Dmax, all the curves
converge to an EE level that increases with N . Fig. 6a also
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Fig. 6: Maximum achievable EE versus delay-bound for
multicarrier system with N i.i.d. subcarriers.

indicates that the achievable EE becomes less sensitive to
Pout as N increases. In Fig. 6b, we compare the maximum
achievable EE of the independent and jointly optimal schemes
as a function of Dmax for different Pout. In contrary to the
jointly optimal scheme where the EE converges to a non-
zero value as Dmax decreases, the EE of the independent
subcarrier optimization scheme converges to zero for all N
and Pout. In other words, for a given multicarrier system with
a target delay-outage probability, the proposed jointly EE-
optimal power allocation offers significant EE gains over the
simple independent subcarrier optimization scheme.

Fig. 7 then shows the normalized EC against Dmax again
for jointly-optimal EE-based power allocation with different
outage probabilities. The behavior cannot be easily explained
since different points employ different average powers. How-
ever, from these results, one can conclude that the required
buffer size for a given source rate μ can be determined from
the product of Dmax and μ. For example, for N = 2, with
μ = 0.35 b/s/Hz, the required buffer size to meet a delay-
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outage Pout of 1% is about 2500 bits.
Next, Fig. 8 plots the delay-outage probability Pout versus θ

for independent and jointly-optimal EE-based allocations with
various Dmax. For a given Dmax, the delay-outage probability
is shown to decrease with the QoS exponent, where the inde-
pendent approach experiences lower decaying rates compared
to the joint allocation particularly at high values of θ. Also,
the outage probability of both power allocations diminishes
with increasing Dmax. Furthermore, for a given Dmax, Pout

decreases as N increases where the reduction in the delay-
outage probability is more pronounced in the independent
optimization approach, as opposed to the joint scheme which
is less sensitive to N .

In Fig. 9, we plot the EC against the scaled sum power
constraint P R for N = 2 subcarriers with a given θ = 0.01
and with different scaled circuit powers PCR . With spectral-
efficient power allocation, the effective capacity increases with
increasing P R. However, the energy-efficient power allocation
achieves the same EC until a given break-point, where the
EC flattens out and saturates afterwards. This is due to the
fact that, after the breakpoint P ∗

un, increasing power does not
benefit EE, and thus, as shown in Section III-C for any P R ≥
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system with 2 subcarriers.

P ∗
un, the proposed jointly optimal EE allocation does not use

all the available power but rather operates at a fixed power
level of P ∗

un and in turn, achieves a certain EC.
Figure 10 shows the maximum achievable QoS-driven EE

versus the scaled sum power constraint P R for the same
system. Similarly, with energy-efficient power allocation, the
maximum achievable QoS-driven EE increases with increasing
P R until a given break-point where the QoS-driven EE satu-
rates. Again, the reason is that the proposed jointly optimal
allocation operates at the global optimal power level P ∗

un for
any P R ≥ P ∗

un. On the other hand, with a spectral-efficient
power allocation, the QoS-driven EE decreases after it reaches
its maximum. In other words, on the right hand side of
the break-point where P R is relatively high, the proposed
EE-based power allocation maintains EE by sacrificing SE.
However, on the left hand side of the break-point where P R

is relatively low, we do not trade off SE for EE. Furthermore,
with energy-efficient power allocation, the figures also reveal
that increasing PCR decreases the QoS-driven EE and shifts the
break-point to the right such that the EC is increased beyond
the break-point. The results indicate that the proposed energy-
efficient scheme is more fruitful at low values of PCR where
the EE gains are more pronounced.

V. CONCLUSIONS

We considered the problem of energy-efficient power alloca-
tion for multicarrier systems where the receiver requires a tar-
get delay-outage probability for its successful communication.
We showed that the optimal QoS-driven EE can be achieved
through fractional programming. First, we proved that the EE
is quasi-concave in the subcarrier power allocations. Next, we
solved the EE optimization problem without considering any
input transmit power constraint. We showed that the uncon-
strained optimal EE could be obtained using a two-step algo-
rithm by first finding the optimum average sum power level
and then distributing the subcarrier powers optimally over both
frequency and time based on this level using a traditional SE-
based allocation. In contrary to delay-unconstrained system,
the structure of the QoS-driven EE-optimal power allocation
is not a standard water-filling approach, but rather depends
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Fig. 10: EE versus average power constraint for multicarrier
system with 2 subcarriers.

on both the circuit power as well as the delay requirement.
Having solved the power-unconstrained problem, a total power
constraint is introduced and the solution is now developed
under an average sum transmit power constraint. Numerical
results demonstrate significant EE gains over the independent
subcarrier optimization approach with more pronounced gains
in systems with more stringent delay constraints, as well as
in fading channels with higher frequency selectivity. Further,
the buffer size required for achieving a specific delay-outage
probability is characterized for any given operating through-
put. The effect of the transmit power constraint on the rate-
energy tradeoff has been analyzed wherein the proposed EE-
based power allocation maximizes EE by sacrificing SE at
values of P R greater than a certain threshold, while the EC
is maintained at values of P R lower than that threshold. The
threshold was shown to be an increasing function of the circuit
power consumption.

APPENDIX A

PROOF OF THEOREM 1

Let f
(
P R
)

be a function of the power allocations {P R
n ≥

0, n = 1, 2, · · · , N} as

f
(
P R
)
= ln

(
Λ(P R)

)
, (25)

where Λ(P R) = Ex

[∏N
n=1 Un(xn, P

R
n )
]

and Un(xn, P
R
n ) =(

1 + xnP
R
n (θ,γ)

)−β
> 0. Taking Un(xn, P

R
n ) as Un for

simplicity, the first partial derivative of f
(
P R
)

with respect
to P R

i , ∀i = 1, 2, ..., N, is found to be always negative as

∂f
(
P R
)

∂P R
i

=
Λ′(P R)

Λ(P R)

=

−β · Ex

[
xi

1 + P R
i xi

∏N
n=1 Un

]

Ex

[∏N
n=1 Un

] < 0, (26)

where Λ′(P R) is the first partial derivative of Λ(P R) with
respect to P R

i . In turn, the second partial derivatives can be
obtained as in (27a) and (27b) (which can be found at the top
of the previous page), where G(P R) is the first partial deriva-

tive of Λ(P R) with respect to P R
j and G′(P R) =

∂G

∂P R
i

=

∂2Λ(P R)
∂P R

i P
R
j

=
∂2Λ(P R)
∂P R

j P
R
i

. In order to have unique notations for
the different higher-order derivatives, the superscript primes
are solely dedicated for differentiation with respect to P R

i .
Since {xi, ∀i = 1, ..., N} are i.i.d. random variables such

that E[h(xi)] = E[h(xj)] ∀i, j = 1, ..., N for any function

h(·), then the partial derivative b ≡ ∂2f(P R)
∂P R

i
2 is constant ∀i =

1, 2, . . . , N , whereas the partial derivative a ≡ ∂2f(P R)
∂P R

i P
R
j

is also

constant ∀i �= j. Thus, the Hessian of the function f
(
P R
)

is
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Ψ
(
P R
)
=Λ′′(P R)Λ(P R)− (Λ′(P R))2 + (N − 1)

[
G′(P R)Λ(P R)− Λ′(P R)G(P R)

]
=β (β + 1)Ex

[
x2
i(

1 + P R
i xi

)2
N∏

n=1

Un

]
Ex

[
N∏

n=1

Un

]
+ (N − 1)β2

Ex

[
xixj(

1 + P R
i xi

) (
1 + P R

j xj

) N∏
n=1

Un

]
Ex

[
N∏

n=1

Un

]

−Nβ2

(
Ex

[
xi

1 + P R
i xi

N∏
n=1

Un

])2

. (32)

an N ×N real symmetric matrix given by

∇2f
(
P R
)
=

⎡
⎢⎢⎢⎢⎣
b a ... a

a b
...

...
. . . a

a ... a b

⎤
⎥⎥⎥⎥⎦
N×N

. (28)

Hence, using real Schur decomposition, the Hessian in (28)
can be decomposed as

∇2f
(
P R
)
= V

⎡
⎢⎢⎢⎢⎣
b+ (N − 1) a 0 ... 0

0 b− a
...

...
... 0

0 ... 0 b− a

⎤
⎥⎥⎥⎥⎦V T ,

where V is an orthogonal matrix and the entries of the
diagonal matrix, b− a and b+(N − 1)a, are the eigenvalues
of ∇2f

(
P R
)
.

APPENDIX B

PROOF OF THEOREM 2

Based on Theorem 1, ∇2f
(
P R
)

has two distinct eigenval-
ues. First, we investigate whether the eigenvalue λ1 ≡ b − a
is positive or not by expressing it as

λ1 =
1

Ex

[∏N
n=1 Un

]
(
β (β + 1)Ex

[
x2
i(

1 + P R
i xi

)2
N∏

n=1

Un

]

−β2
Ex

[
xixj(

1 + P R
i xi

) (
1 + P R

j xj

) N∏
n=1

Un

])
. (29)

Since β · Ex

[
x2
i(

1 + P R
i xi

)2 ∏N
n=1 Un

]
> 0, it can be easily

seen from (29) that

λ1 > Ω ≡ β2

Ex

[∏N
n=1 Un

]
(
Ex

[
x2
i(

1 + P R
i xi

)2
N∏

n=1

Un

]

−Ex

[
xixj(

1 + P R
i xi

) (
1 + P R

j xj

) N∏
n=1

Un

])
. (30)

Due to the i.i.d. property of {xi, ∀i = 1, ..., N}, we further
note that

2Ω =
β2

Ex

[∏N
n=1 Un

]
(
Ex

[(
x2
i(

1 + P R
i xi

)2 +
x2
j(

1 + P R
j xj

)2
− 2xixj(

1 + P R
i xi

) (
1 + P R

j xj

)
)

N∏
n=1

Un

])

=

β2
Ex

⎡
⎣( xi

1 + P R
i xi

− xj

1 + P R
j xj

)2∏N
n=1 Un

⎤
⎦

Ex

[∏N
n=1 Un

] > 0.

(31)

Since Ω > 0 and λ1 > Ω, then λ1 must also be positive.
Now, let investigate whether the remaining eigenvalue λ2 ≡

b+(N − 1) a is also positive. Since the denominator of λ2 is
always positive from (27a) and (27b), it is sufficient to prove
that the numerator is positive. Denoting the numerator of λ2

by Ψ
(
P R
)
, we get (32) (which can be found at the top of the

next page).
The value for Ψ

(
P R
)

at P R = 0 and P R → ∞ can be
obtained and bounded using the Jensen’s inequality as

Ψ
(
P R
) |P R=0 = β (β + 1)Ex

[
x2
i

]− β2
Ex [xi]

2 ≥ 0,
(33a)

Ψ
(
P R
) |P R→∞ → 0. (33b)

We now prove by contradiction that Ψ
(
P R
)

can never cross
the zero axis. Assume that Ψ

(
P R
)

crosses the zero axis.

First, we show that the function χ
(
P R
)
= N

∂f
(
P R
)

∂P R
i

whose

derivative is λ2, i.e., λ2 =
∂χ
(
P R
)

∂P R
i

, is always negative since

N
∂f
(
P R
)

∂P R
i

=
∂f
(
P R
)

∂P R
i

+ (N − 1)
∂f
(
P R
)

∂P R
j

< 0. (34)

Using (26), we further note that

∂χ
(
P R
)

∂P R
i

∣∣∣∣
P R→∞

→ 0. (35)

Then, due to (35) and the fact that λ2 is a continuous increas-
ing function at P R = 0, it can be shown that Ψ

(
P R
)

has to
cross the zero axis at least twice. Since Ψ

(
P R
)

is a continuous
function, then it must have a stationary point between the
two points where it crosses the zero axis. Consequently, due
to (33b), Ψ

(
P R
)

will have another stationary point after it
crosses the zero axis for the second time. Hence, Ψ′ (P R

)
has
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to also cross the zero axis twice. Similarly for any n, since

Ψ(n)
(
P R
)
=

∂nΨ(P R)
∂(P R

i )
n is a continuous function that tends to

zero when P R → ∞, then recursively Ψ(n)
(
P R
) |n→∞ has

to cross the zero axis twice.
On another side, we note that the nth derivative of Ψ

(
P R
)

can be determined from (32) as

Ψ(n)
(
P R
)
=Λ(n+2)(P R)Λ(P R)

+ Λ(n+1)(P R)
(
c11Λ

′(P R) + c12G
′(P R)

)
+ Λ(n)(P R)

(
c21Λ

′′(P R) + c22G
′′(P R)

)
+ · · · ,

(36)

with constants {cmn} such that

Λ(n+1)(P R)
(
c11Λ

′(P R) + c12G
′(P R)

)
Λ(n+2)(P R)Λ(P R)

∣∣∣∣
n→∞

=c ·

∏n+1
k=1(β + k − 1)Ex

[(
xi

1 + P R
i xi

)n+1∏N
n=1 Un

]

∏n+2
k=1(β + k − 1)Ex

[(
xi

1 + P R
i xi

)n+2∏N
n=1 Un

]
∣∣∣∣∣∣∣∣∣∣
n→∞

=0, (37)

where c is a constant that does not depend on n. In the view
of (37), the same behavior is maintained for the remaining
terms of the series in (36), and therefore, Ψ(n)

(
P R
) |n→∞ =

Λ(n+2)(P R)Λ(P R)|n→∞ cannot be zero. Hence, by contra-
diction, we can conclude that the initial assumption must be
false and, as such, Ψ

(
P R
)

never crosses the zero axis. Since
Ψ(P R)|P R=0 is found to be positive, then Ψ

(
P R
)

is always
positive. As a result, all the eigenvalues of the Hessian function
of f

(
P R
)

are positive and, in turn, ∇2f
(
P R
)

is positive
semi-definite.

APPENDIX C

PROOF OF THEOREM 3

Since the EE objective function, EE (θ), in (12) is shown
to be a ratio of a concave to a non-negative affine function
in P R (θ,γ), then EE (θ) is a quasi-concave function of the
subcarrier power allocations. In other words, the sublevel sets
of EE (θ) is strictly convex for any real ξ and can be given as

Sξ = {P R (θ,γ) � 0|EE (θ) ≥ ξ}, (38)

where � denotes vector inequality and hence, P R (θ,γ) �
0 indicates that each element of P R (θ,γ) is non-negative.
Strictly quasi-concave functions are unimodal such that every
local maximum is a unique global one. Denote this unique
global maximum by P ∗

un, which is essentially the average sum
power at which the unconstrained EE in (12) is maximized.
Therefore, EE (θ) is an increasing function of average power
until P ∗

un, beyond which the EE decreases with power.
Applying a constraint on the average sum transmit power

P R, it can be easily seen that the optimal solution to the
constrained problem in (23) is either the global solution of
the problem or the boundary at which the constraint intersects
the QoS-driven EE function. In the case where P R < P ∗

un,
the maximum EE, EEopt (θ), is achieved at P R since EE (θ)
is increasing till P R. Accordingly, the optimum value for

the denominator of EEopt (θ) is now fixed to PCR + P R.
In conclusion, the QoS-driven EE maximization reduces to
maximizing the EC with an average input power limit set to
P R.
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